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SUMMARY

Bloch analysis was originally developed by Felix Bloch to solve Schrodinger’s
equation for the electron wave function in a periodic potential field, such as that found
in a pristine crystalline solid. His method has since been adapted to study elastic wave
propagation in periodic structures. The absence of a rigorous mathematical analy-
sis of the approach, as applied to periodic structures, has resulted in mistreatment
of internal forces and misapplication to nonlinear media. In this thesis, we detail a
mathematical basis for Bloch analysis and thereby shed important light on the proper
application of the technique. We show conclusively that translational invariance is
not a proper justification for invoking the existence of a "propagation constant," and
that in nonlinear media this results in a flawed analysis. Next, we propose a general
framework for applying Bloch analysis in damped systems and investigate the effect
of damping on dispersion curves. In the context of Schrodinger’s equation, damp-
ing is absent and energy is conserved. In the damped setting, application of Bloch
analysis is not straight-forward and requires additional considerations in order to ob-
tain valid results. Results are presented in which the approach is applied to example
structures. These results reveal that damping may introduce wavenumber band gaps
and bending of dispersion curves such that two or more temporal frequencies exist for
each dispersion curve and wavenumber. We close the thesis by deriving conditions
which predict the number of wavevectors at each frequency in a dispersion relation.
This has important implications for the number of nearest neighbor interactions that
must be included in a model in order to obtain dispersion predictions which match

experiment.
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CHAPTER 1

INTRODUCTION

In this chapter we first provide motivation for studying periodic structures and then
discuss wave propagation in these structures and our contribution in this regard. We

close this chapter by providing a thesis overview.

1.1 Motivation

Structures with periodic features are found widely in nature and engineered systems
(Fig.1). From an engineering perspective, the main interest in these structures stems
from their ease of manufacture, significant impact and high temperature tolerance,
and high strength-to-weight ratios [1]. For these properties, structures like the ones

depicted in Fig.2 are being used abundantly in the aerospace industry.

Periodic assemblies can also be patterned in such a way that they show negative
Poisson’s ratio [9]-[11]. In addition, periodic structures provide advantageous wave
propagation characteristics that are useful in wave guides and filters [12]. Due to
their important role in industry, it is vital to model and understand wave phenom-
ena in these structures. Another type of periodic structure, is the crystalline solid.
Crystalline solids have been of interest for their electric and/or heat conductance
properties. Carbon nanotubes, as an example, have been shown to have novel prop-
erties which make them a preferred choice in several applications of nanotechnology.
In this thesis, we focus on the modelling of the engineering structures with macro-scale
size. However, it is shown in Chapter 6 that the mass-spring model can characterize

phononic band structures of crystals.



Figure 1: An example of a periodic structure [2].

1.2 Review of Wave Propagation in Undamped Pe-

rrodic Structures

The modeling theories of periodic materials are not restricted to the engineering
field. Wave propagation behavior in periodic media has been an area of interest for
physicists and the like. Engineers are primarily interested in the wave characteristics
of macroscopic periodic structures such as sandwich beams and honeycomb panels for
airplane fuselages, while physicists study wave phenomena taking place in microscopic
periodic medium, such as electron and phonon transport in crystals. These two
approaches by engineers and physicists, developed independently and in parallel (until

fairly recently) have both been referred to as Bloch analysis.

In the physical sciences, wave-like (hyperbolic) partial differential equations arise;
these are parametrized by one or more periodic coefficients [28]. Generally, these
equations take the form V2i(r) 4+ w?F(r)y(r) = 0 in which ¢ (r) is a field vector
at location r and F(r) is a periodic function. Floquet studied this equation when
stated in one-dimension and F(r) is a cosine function (which yields Mathieu’s equa-
tion). Bloch also solved a similar equation in quantum mechanics. Brillouin [28] used

the Bloch theorem to solve the three dimensional wave equation. Since this time,



(a) (b)

Figure 2: Schematic pictures of hexagonal (a) and square (b) honeycomb cores [7].

Bloch’s method has been utilized in other physical sciences [29] as well as engineering

applications, to include acoustics and the study of sonic crystals [30],[31].

In structural wave propagation, one of the early pioneers of the subject was Heckl
[32]. He studied wave propagation in a beam with periodic discontinuities, such as in
a grillage. In his work, Heckl assumed a thin-enough beam such that the usual linear
differential equation for bending beams holds. Then, from translational invariance of
the structure, he concluded the existence of the "propagation constant." He stated
that in a single-frequency wave, displacements of two points ¢; and ¢; separated by a
periodic length satisfy go = ¢;.¢*, where p is the propagation constant. Another early
pioneer of the field was Mead [33],[34], who applied Heckl’s method for investigating
harmonic wave propagation in periodic systems. He used the propagation constant
to study both the displacements and the forces in a periodic system. His method
reduces the size of the problem from the entire periodic structure to a single unit
cell. Mead’s work was followed by other researchers who analyzed a diverse variety
of structures [35]-[45]. In his review paper [46], Mead addresses some of the relevant

work which uses the propagation constant idea.

Advances in computation led to wide use of the finite element method in the study

of wave propagation. The method transforms the equations governing a continuous
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Figure 3: The envelope function, unit cell vibration and the product of them is
depicted here for a 1-D case and some w and k. Graph (a) shows the external
excitation exerted on the structure. In the graph b, the vertical lines are the cell
boundary. The bottom graph (c) shows vibration of the lattice as the product of the
envelope function ( graph a) and the unit cell vibration (graph b).

AV

medium to equations governing a finite degree-of-freedom system. In the finite ele-
ment analysis of a structure, it is of great advantage if the equations of motion are
written for a unit cell rather than the entire structure. However, as in any discrete
treatment, the challenge is that the resulting equations of motion include internal
forces on the right-hand side. Orris [47] used Mead’s work to tackle this problem in
investigating harmonic wave propagation in periodic structures. More recently, this
method has been applied by Duhamel et al.[41] and Phani et al.[48] to investigate the
acoustic band structure of example honeycomb structures. In these works and others,
researchers exclusively use the fact that the equations of motion can be reduced to the
minimum number of degrees of freedom (e.g., displacements) using Bloch analysis,
and thus solve the wave equation on the boundary of the irreducible Brillouin zone.
In their standard procedure, it has been assumed that the propagating wave through
the structure has a sinusoidal envelope, which is defined by the propagation constant.
This results in a Bloch relation between two consecutive lattice points or forces (see

Fig. 3).



1.3 Contributions with Regards to Wave Propaga-

tizon i Undamped Periodic Structures

Although the "propagation constant" method has been called Bloch analysis [48],
there has been little effort to connect the two methods rigorously. This rigorous
treatment is of particular concern since some researchers have applied the propaga-
tion constant technique in nonlinear cases [49], [50]. As is shown in Chapter III, we
need the linearity of the differential equation of motion to prove the existence of a
propagation constant; i.e., the translational invariance in a structure is not a sufficient
condition for the existence of a propagation constant. In this thesis, we develop a
framework to rigorously connect Bloch analysis and the "propagation constant" tech-
nique. This framework also enables us to address other issues with wave propagation

in periodic structures; in this regard, the contributions of the thesis are:

e We demonstrate that for any two- or three-dimensional periodic lattice, the
forces on the boundary of the unit cell vanish upon the action of a linear trans-

formation, and this results in an eigenvalue problem.

e Using the resulting eigenvalue problem, we rigorously link the previously used

"propagation constant" technique to the Bloch analysis.

e Using the developed framework, we construct a simple counter-example to add
to the growing evidence that considering only the boundary of the irreducible

Brillouin zone may lead to erroneous calculations of the magnitude of band

gaps.



1.4 Contributions with Regards to Damped Wave

Propagation in Periodic Structures

As mentioned before, Bloch’s method was originally developed by Felix Bloch [54] to
solve Schridinger’s equation for the electron wave function in a periodic potential field,
such as found in a pristine crystalline solid. Unlike electron wave functions, damp-
ing and energy dissipation mechanisms alter waves in periodic structures. Mead [34]
provided an early discussion of damping in a 1-D infinite periodic structure. Mukher-
jee and Lee [77] investigated wave propagation in a viscoelastic composite. In their
model, they assumed a real wavevector and complex temporal frequency; hence their
analysis does not hold for the steady-state situation. Sprik and Wegdam [78] consid-
ered acoustic band gaps in composites of solids and viscous liquids. They considered
both temporal and spatial attenuation in this special case only. Others [79]-[82] have
investigated the effect of damping on limited numbers of layers and/or limited fre-
quency damping models. Recently Hussein [83] studied the effect of damping on
dispersion curves and band structures. In his paper, he restricted his investigation of
band gap properties to the effect of Rayleigh-type damping. In our work, we address
general linear damping for the steady state situation and our original contributions

to this area include:

e We formulate Bloch analysis for generally damped periodic structures.

o We investigate the effect damping has on the range of admissible wavevectors

and dispersion curves.

e We discuss phenomena which arise only in a damped periodic structure includ-

ing:

— Spatial frequency band gaps.



— Multiple frequencies for a given dispersion branch and wavevector.

1.5 Contributions with Regards to Phonon Disper-
ston

The mass-spring model as will be discussed in Chapter IV, also characterizes the force
constant model of a crystalline material. Phonon dispersion curves of various crystals
are obtained either by experiments or by ab initio calculations. The force constants
are then calculated by fitting the mass-spring-model output into the experimental /
ab initio results. The advantage of a force constant model is its simplicity and also the
ease of application to similar materials. For example, the phonon dispersion curves of
graphene are obtained by experiment, the force constants are next evaluated and then
phonon dispersion curves of carbon nanotubes with any chiralities can be determined
by the evaluated constants. Since there are several compounds that form layered
structures similar to graphite, there exist several tubular nanostructures including
nanotubes made out of BN [3], MoS, [4], BCoN [5] and SiO, [6]. In the force constant
model, there is a cut-off distance after which there is negligible interaction between
atoms. Hence we need only to consider interaction between atoms up to, for example,
the third nearest neighbor. There are models however, in which the forces between
atoms are modeled by elastic beams [7], [8]. In these models, the interaction between
the nearest neighbors are considered. In this thesis, by considering the number of
wavevectors for each frequency in the dispersion relation, we derive conditions to check
the validity of the nearest-neighbor-interaction model. This criterion is achieved by
employing the framework we develop in the early chapters of the thesis. In short, our

contribution in this regard is:

e We develop a framework to predict the maximum number of wavevectors for

each frequency in the characterization of phonon dispersion.



1.6 Thests Overview

We start by a short introduction of periodic structures and our contributions to this
subject. In Chapter II, Bloch analysis is reviewed as we write about the origin of
this theorem. We then detail a mathematical basis for invoking Bloch formalism in
the analysis of periodic structures and connect Bloch analysis with the "Propagation
constant" technique. In Chapter III, the treatment of forces in Bloch analysis is
discussed. Chapter IV deals with the mathematical basis for Bloch analysis of damped
structures. The validity of Bloch’s theorem in these structures is explored and some
new properties special to these structures are presented. In Chapter V, we investigate
phonon dispersion curves of crystalline materials. It is shown that a mass-spring
model is a useful tool by which we can reproduce experimental results. We then
investigate the relation between the number of temporal frequencies and wavevectors.

In Chapter VI, we propose follow-on research in this specific area.



CHAPTER 11

MATHEMATICAL BASIS FOR BLOCH

FORMALISM IN PERIODIC STRUCTURES

In this chapter, we first discuss Bloch analysis from its original perspective in quan-
tum mechanics. Then we revisit Bloch analysis for discrete systems from a new
perspective. We then address the role of asymmetry in investigating frequency band
gaps. Most studies assume that the extremum of frequencies exclusively occur on
the boundary of the irreducible Brillouin zone. While this is generally true in solid
state physics, it is not strictly true in a general wave propagation problem [51], [52].
By constructing an asymmetrical counter-example, we add to growing evidence that
this assumption might lead to erroneous conclusions about the extent of frequency
band gaps. Finally, in Appendix A we show by example that invoking a propagation

constant in nonlinear systems violates energy conservation.

2.1 Bloch Analysis

We first overview Bloch analysis as it has been applied to periodic structures. We
then present the Bloch analysis in its original form as it arose in quantum mechanics.
Finally, we rigorously demonstrate the Bloch relations (or propagation constants) for

forces and displacements in periodic lattices.



2.1.1 Overview

Any lattice structure in a three dimensional space can be constructed by translating
a repeating unit cell along three linearly independent - but not necessarily orthogonal
- lattice vectors a;,a,,a; [28]. Applying Lagrangian or Newtonian dynamics, the

equations of motion for a unit cell take the following general form,

Mqg+Kq =F, (1)

in which matrices M and K represent the global mass and stiffness matrices of the
unit cell, q and q represents the (nodal) displacements and accelerations, and F
denotes the (nodal) forces on that unit cell exerted by the neighboring cells in the
structure. Bloch analysis starts with a harmonic solution for q. As a result q can be

replaced by —w?q, such that (1) takes the form:

(-w*M +K)q =F. (2)

We denote the displacements of the cell located at nja;+nsas+mnsas by q(ni, no, ns3).
In Chapter 3 we demonstrate rigorously that solutions to (2) exist having the prop-

erty:

Cl(”l, ng, n3) - €k~(n1a1+nzaz+n3a3)q(0’ Oa 0)7 (3)

where k-(nja; + nqsas + ngasz) is the general form of the propagation constant. As
mentioned before, (3) has been used by most published works to reduce (2) to an
eigenvalue problem. The resulting eigenvalue w is the propagation frequency, and it
is a function of M and K and wavevector k. Each propagation mode of the entire
lattice can be written as the product of an envelope harmonic function and the unit

cell vibration; see Fig. 3 for an example.
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2.1.2 Origins

Bloch theory was originally used to study the behavior of electrons in a crystal. The
behavior of the electron wave function ¢, (r) with energy Ej, follows the Schrodinger

equation [53],

o V)| 4(6) = B ). (@)
in which m is the mass of an electron and h is Planck’s constant. For a single electron,
i.e., neglecting the magnetic effects, the potential energy from all other nuclei and
electrons is periodic in the crystal: V(r) = V(r 4+ p) in which p is any lattice vector.
In (4), the bracketed term is the Hamiltonian operator H(r). With this substitution,

(4) can be restated in a more compact form as,

H(r)y,,(r) = Exyy(r) and H(r) = H(r + p). (5)

It is well-known [54] that the solution to the eigenvalue problem of (5) takes the

form:
Ui+ p) = Py, (r), (6)

in which k. is the electron wavevector. In addition, due to the periodicity of the

crystal, the probability of finding an electron would be the same at r + p and r:

[Wp(r+p)|* = v, (). (7)

Here by substituting (6) into (7), we conclude |e’**P| = 1 and hence that k. - p is a

real number.

Unlike the inhomogeneous equation of motion (2), the homogeneous wave equation

in (5) is inherently an eigenvalue problem. Consequently, we cannot borrow Bloch’s

11



analysis without proper justification. In other words, the existence of the propagation

constant needs to be addressed within a proper mathematical treatment using (2).

2.2 Bloch Formalism in Periodic Structures

In this chapter we detail the mathematical basis for invoking Bloch formalism (3)
in the analysis of periodic structures. In order to find the Bloch relation between
the displacements, we presuppose a mapping which associates the displacements of
a unit cell to the displacements of another unit cell without any assumption on its
form or nature. This mapping holds for desired solutions to (2). Then with the use
of symmetry in the system, we find the mathematical expression required for this
mapping. To facilitate our goal, we first define a translation operator Ty, for each
lattice vector V. =nja; 4+ ngas which upon operating on any function f(r), shifts the

argument by V:

Ty : f(r) — f(r+V). (8)

For ease of notation, we associate x and y directions to a; and a; and identify
translation operators T, T, and T, corresponding to V’s equal to a;, a;, and a; +ay,
respectively. We then consider a single unit cell in the lattice structure and define
a minimal set of displacements. We denote them as q; and q for the internal and
essential boundary displacements, respectively. The remaining nodal displacements
in the unit cell can be determined by applying T,, T, and T,, on q; i.e., by pushing
q forward in a combination of a; and/or as; see Fig. 4 for an example geometry. The
relation between the minimum set of displacements q;, q and the totality of unit cell

displacements q is stated as [93]:

12



Figure 4: A honeycomb lattice, with the unit vectors a;and a;. The minimal set
of displacements in a unit cell are q; = [qi], q = [ d2 qds3 ]T. The rest of the
displacements can be defined by pushing these minimal set in ajor/and ay direction:

[q4] = T:c(ﬁ) = ax, [Q5] - Ty(a) = ayv |: ds dr7 ]T == Txy(a) = axy-

q=Tq,

in which

such that q and F take the form

13
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€2
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Figure 5: A schematic view of unit cell with its neighboring cells. In the cell (nq, ns),
q represents coordinates of the lower left shaded region. T_, is an operator which
pulls forces and displacements back in the x direction. The operators T_, and T_,,
would do the same in their respective directions.

In (11), FZ,™ denotes the force located with g, and acting on the cell (n1,72)[93].
Note that q, of the cell (n,ns) is contained by q of the cell (ny + 1,7n5). We can also
define negative translation operators TT | sz and szy. If T, represents a pushing

forward action in the z direction, then T”_ is a pulling back action in the same x

xT

direction (Fig. 5). Up to this point, we have not assumed the functional form of these

mappings. The above conditions can be formally stated as:

ni,n n1—1,n ni,n ni,na—1 ni,n n1—1l,ng—1
T? (F3l"?) = Fo =t T (Fai™) = Faim ! T, (Faln?) = Fat ™= (12)

-y qry

Due to the equilibrium condition at q (as can bee seen in the schematic shaded

region in Fig. 6) we have the following result [93], [55]:

I 0 0 0 0
F=0. (13)
oI 17, 17, TT,,
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Figure 6: The force exerted on the shaded region by the neighboring cells in depicted
on the right picture. The sum of all forces on this imaginary region should be zero.

The left hand side matrix in (13) consists of negative translation operators. We
denote this matrix by T . By multiplying Eq. (2) with T  and using the result of
Eq. (13) we have:

T (—wM+K)q=0= (—w’T M+T K)q. (14)

Note that up until now, T is made up of pull-back operators, which are in
unknown forms. However as we will see later, in the absence of energy dissipation in

the system T =T , in which T is the conjugate transpose of T.

Next we enforce the periodicity of the structure. Treating the unit cell at (nq,ns)

ny,n2

ni,n2 ni,n2
3 U EF N2 and

and the outputs are F o du

as a control volume, the input to the volume is F
Fg;’;z. Due to the periodicity of the structure, for the solutions sought, the opera-

tor T' must be the same for all unit cells in the lattice structure; i.e., the relations

between the input-output forces are the same throughout the lattice.

In the following, we adopt the strategy used to prove Bloch’s theorem in quantum
mechanics [56],[57] and apply it in our problem. Given that Eq. (14) holds for any

cell in a periodic structure, we can apply Ty on its right hand side:

15



Tv((—w’T MT + T KT)g) = 0, (15)

in which all M, K, TT, T and q are translated along a lattice vector V. Note
that TV(TTMT) =T MT and TV(TTKT) = TTKT, since M, K, T and T are

invariant under the translation operator. Consequently,

(—w?*T MT + T KT)T,,(q) = 0, (16)

which implies that T'v(q) and q are both eigenvectors for the same general eigenvalue
problem (14). In order to simplify the demonstration we assume that the geometric
multiplicity of the eigenvalue w? is one. In cases of higher multiplicity, we can use
the same method, however with more care for eigenfunctions (see Appendix B). As a
result, Tv(q) and q should be along the same eigenvector direction; i.e., one should

be a multiple of the other,

where the coefficient A is a function of V. If we set V'=nsa; + nya,, then

Tv/(Tv(q)) = Ty.(MV)a), (18)

or,

Ty(q) =A(V)a. (19)

If we denote the displacement vector of a unit cell by q, then Ty (q) is the displace-
ment vector of another unit cell obtained by translating the original unit cell by the

vector V. Renaming A\(V)q by ¢/, then by the same argument as Eq. (17), we have:

Tv(q) =AV)A(V)a. (20)
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We also have (proceeding from left to right),

Tv/(Tv(q)) =a((n1 +nz)ar + (n2 +n4)ag) = Tyiv(q) =AMV +V)a, (21)

i.e. M\(V+V') = XV)AV'), so for a general V we can write \ as a power function

2mik.

of V. For the base lattice vector a;, we can write \(a;) =e*™" with proper choice of

k;. Then using the definition of V =nja; + noas ,

A(V) =Aa1)™ Aaz)™ = ePmitmbtnaks), (22)

Writing the right hand side of (22) as e®V, we recognize it to be a plane wave with
wavevector k = kib; + ksbg, in which b,’s are reciprocal lattice vectors satisfying
b; - a; = 2n6,;;. Furthermore, 2mi(nik; + ngks) is recognized to be the propaga-
tion constant. This establishes equation (3), and we are finished with the rigorous

demonstration of Bloch formalism for displacements.
In addition to the displacements relation, we can find the translation operator Ty

by application to (2),

Ty ((~*M + K)q) = Ty (F). (23)

However, the left-hand side of Eq.(23) can be simplified as

(—w*™™ + K)Ty(q) =(—w’M + K)e™*Vq . (24)

By comparing (23),(24) and (2) one obtains Ty (F) =e’*VF. Since q, of the cell

(n1,n2) is contained by q of the cell (ny + 1,n3), Tx can be defined for the displace-
ments, and we are guaranteed that the same translation applies to the forces. The

same argument is valid for Ty and Ty, .
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In addition, we can show that ik is an imaginary number for the case in which
constant energy flows into and out of the unit cells; .e., when the average input
power to each unit cell over one period of vibration is the same. Dissipative periodic
systems have received little attention and should be investigated in future work. For

the conservative case we can write:

1 - 1 -
sRe{(Fad)} =5 Re{(Tv(F). Tv@)} | (25)
in which %Re <Fq, a> is the time averaged power entering unit cell at ﬁ The right-

hand side can be simplified to

SR (VG V) = Lo {RVERY (g )} = L%V Re { (g 4)}
(26)
ik~V|2

which results in |e = 1, or ik an imaginary number. Further properties of the

eigenvalue problem are discussed in the Appendix.

It should be noted that we started from an equation of motion (2) which is char-
acterized by linear differential operators. We then used the linearity of the equations
to obtain (16) and to conclude (17). Consequently, the linearity of the differential
operator is a sufficient condition for the existence of the propagation constant. This
does not rule out the existence of a propagation constant for nonlinear structures.
However, in the Appendix, we show by example that the existence of the propagation
constant in a nonlinear lattice violates the conservation of energy. Hence, in general,

we cannot apply Bloch to nonlinear periodic structures.

2.3 Sufficiency of the Irreducible Brillouin zone

It is well-known that to investigate the band structure of a periodic material, it is

sufficient to inspect wavevectors lying in the first Brillouin zone. However, in many
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circumstances, we are only interested in uncovering frequency band gaps. In a given
band structure, band gaps are bounded by extrema of each band. Consequently, the
extrema of each band is of special interest. Due to the existing symmetry in most of
the crystals and structures, the extrema most-probably occur on the boundary of the
irreducible Brillouin zone (IBZ)[60]. Nonetheless, this assumption needs to be made

carefully, especially in the case of structures with asymmetries, as shown next.

It is common practice to investigate the boundary of the IBZ when constructing
the band structure of lattices [61]-[63]. Some researchers have acknowledged that the
boundary may be insufficient [48],[64] and [65]. Others have investigated wavevectors
in the interior of the IBZ [66],[67]; however, these studies do not provide a discussion
on its importance or necessity. One of the primary reasons that only the IBZ boundary
is considered in investigating crystalline structures is that sufficient symmetry exists
to warrant the assumption. Adams et al. [52] considered a quasi-one-dimensional
structure in which the extrema of the dispersion curves occur inside the Brillouin
zone. Here, as a complementary result, we show that in a simple engineering lattice

the extrema of w occur on the interior of the Irreducible Brillouin zone.

In the general lattice of Fig. 7, we find by construction a set of stiffnesses which
place one extremum of w at an arbitrary point inside the IBZ. The equations governing

the propagation of Bloch waves are given as,

m 0 0 0 a Fy
0 m 0 O ds Fg.
—w? +K = o (27)
0 0 m 0 d, Fs,
00 0 m Gy Fauy

in which q, q,, q, and q,, represent out of plane coordinates of the left bottom, right
bottom, left top and right top masses, respectively. The stiffness matrix K for the

system of interest is given as
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Figure 7: A unit cell of a simple lattice structure with out of plane displacements for
the masses.

K+ Ky + K3 —K; —K, — K3
K — —K; Ki+ Ky + Ky Ky —K, (25)
— K, K, K+ Ky + Ky —K;
I — K5 — Ky —K; K+ Ky + K3 ]

By using the Bloch procedure and our previous result,
T
q=|1 et ety elltatry) } q , [ 1 eita ey eilietny) | F =0, (29)

in which 27z, and 27z, are replaced by p, and p, for ease of notation. From the

resulting eigenvalue problem,

1
w2 = %(_ 3 cos(ft, + ﬂy) — Ky cos(p, — uy) — 2K, COS(#y)

—2K1 COS(,LLm) +2K1 +2K2+K3 +K4) (30)

We next find the extrema of w? as a function of x, and [y

D2
a;j = Kssin(p, + p,) + Kysin(p, — p,) + 2Ky sin(p,) =0, (31)
Ow? . . :
T Kssin(p, + p,) — Kysin(p, — p,) + 2Ky sin(p,) = 0.

Yy
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Figure 8: Contour graph of w as a function of p, and p,. As can bee seen, the
maximum w occurs inside of the Brillouin zone

In order to have a relative maximum at a point c(u,, i), the following conditions

have to be met:

0*uw? 0*w? 92w? 92w? \°
et d - . 2
o3 -0 Oz O, (%ﬁﬁby) Y (52)

Next we can choose arbitrary normalized wavenumbers 1, and p, for the maximum
point ¢(f,, p1,,) and then find K; > 0 such that (31) and (32) are satisfied. Without
loss of generality, we choose to specify ¢ to be located at p, = 37/2 and u, = 27/3.
Note that this point is not on the boundary of the irreducible Brillouin zone. For a
straight-forward normalization we also chose K, = 2 and find the conditions for all

other stiffnesses. It can be easily verified that by the choice

L+ Ky 1K
92 ’ 2 — \/g )

all desired conditions are satisfied. The contour graph and the dispersion surface for

K3 <0.07, K; =

(33)
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Figure 9: w as a function of p, and p,, for the example of Fig. 7

K3 = .05 are shown in Fig. 8 and Fig. 9. As evident in the figures, the maximum w
is achieved at the designed-for y, = 37/2 and p, = 27/3. This constructed example
clearly shows that neglecting points inside the irreducible Brillouin zone may result in
an erroneous conclusion regarding the band gaps. In other words, inspecting only the
boundary of IBZ, one might conclude the existence of a band gap larger in magnitude

than the actual band gap in the lattice.

2.4 Bloch Analysis in Nonlinear Periodic Struc-
tures

In this section, it is shown that the existence of the propagation constant in a nonlinear

system with no dissipation of energy would violate conservation of energy. Consider
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Figure 10: An infinite mass-spring system with nonlinear spring stiffness. The unit
cell boundaries are marked by dashed lines.

an infinite periodic mass-spring chain as depicted in Fig. 10. Let’s assume that in

the mass-spring system of Fig. 10, the following Bloch relation holds:

Qn-1 =€ "oq,, Qi1 = €eeq, . (34)

Let the spring force be a nonlinear function of displacement, such that the force

exerted on the right boundary of the unit cell (collocated with q,,) takes the form:

Fqn = Kl (qn—i—l - qn) + KQ(qn-‘rl - qn)m (35)

in which m # 1 defines the nonlinearity in the spring. As a result, the equation of

motion for a unit cell is:

M@, +K1qn (1=’ )+ Kiq(1—e™ ")+ Ky (qn)™ (1—e" )"+ Ko (q,) ™ (1—e~ )™ = 0.

(36)
The first difficulty with this differential equation is its nonlinearity, so in general we
cannot presume harmonic motion as a solution, i.e. we cannot write q,as —w?3q.
Then for m=1.5 and 1, = 7, conservation of energy for the specified unit cell, implies

that the input energy should equates to the output energy over one period. Let Ej,p.
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and E,yipue be the input and output energy in a period:

Eoput = / Re { (K1 (@t — @) + Ko(aur — q0)"*) Y Re {@, Y dt, (37)
Eoutput = /Re { (Kl (qn - qn+1) + KQ(qn - qn—i—l)l.s)} Re {qn} dt ’ (38)

in which the integral is over one period. We then apply Bloch relation (34) on

expressions (37),(38) for u, = m. The simplified results would take the form:

Biput = / Re{ZKlqn}Re{qn}dtJr% / Re{—i2\/§K2(qn)1‘5}Re{qn}dl(SQ)

Boutput = / Re{ZKlqn}Re{qn}dt+% / Re{2\/§K2(qn)1'5}Re{qn}dt.(40)

The first terms of these expressions are the same; i.e., if Ko = 0 the nonlinear
part of the spring vanishes and we recover Fi,,,: = Foupue- Otherwise, in general,
the two expressions are not equal. For example, when K; = Ky = M = |q,| = 1,
from (36) we calculate w? = 4 + 41/2 . Then the second integral terms in (39),(40)
evaluate numerically to 4.52 and 0.00 respectively. This would clearly violate the

conservation of energy.

2.5 Further Properties of the Eigenvalues

It was found that the push-forward operator T acts the same way on the displacements
and on the forces. By using the common displacement between two adjacent cells,
we can find the form of this operator for a given wavevector k . The relation between
the minimum number of displacements q and all the displacements of a unit cell is

written as:

a=T[q gl =Tq (41)

which results in the eigenvalue problem
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T (—w*M + K)Tq = 0. (42)

In the uniform energy flow case, wavevectors are real, hence e~= and e*= are complex
conjugates. The same relation holds between e~ s, ey e~ Hatity) and e#Fetry) | This
would make T equals to T, which is complex conjugate of T. Consequently (42)

takes the form:

T (—w*M + K)Tq = 0. (43)

We prove that in the eigenvalue problem of (43), the eigenvalues (w?’s) are real and
positive; hence they are physically realizable. In Eq. (2) the mass matrix M and
the stiffness matrix K can be derived by Lagrangian mechanics. In deriving the La-
grangian of a mechanical system, all of the terms in the potential energy contain
displacement q’s measured from the equilibrium positions. As a result, the poten-
tial energy V = 1/2q"Kq =1/2 (q, Kq) is always positive for non-zero q [68]. The
same is true for the kinetic energy which can be stated as 1/ 2qTMq:1 /2 <q, Mq>

Consequently K and M are positive definite matrices. From Eq. (43):
THKTq =w°Dq, (44)

in which T”MT is replaced by D for simplicity. We want to next prove that w? in
(44) is real and positive. Otherwise, w becomes a complex number. To prove this, we
write:
w* (D4, d) = («*D,d) = (T"KT4,d) = (4, (T"KT)"q) = (g T/K"Tq) -
(a4, T"KTq) = (4,»°Dq) = w? (q,Dq) = w?(D"q,q) = w? (Dq,q) .

2

Since (Dq,q) is not always zero, we have w? = w?, implying w? is real. What

2

remains is to show that w® is positive. It was shown that K and M are positive

definite operators on R". As a result:
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Vv eR";0< (Kv,v),s00 < (KTq, Tq) and then 0 < <THKTa, (A1> Similarly,
0 < (THMTq,q) ie 0< (Dq,q).
Now, 0 < (TPKTq,q), so 0 < (w?’Dq,q) = w?(Dq,q). But 0 < (Dgq,q), so we

have 0 < w?.

In this chapter, we rigorously arrived at the Bloch relation for displacements and
forces. In the next chapter, we further clarify the relation between the forces when
analyzing a reference unit cell. Corner forces are discussed in more detail and a
worked-out example is provided to compare correct and incorrect application of the

Bloch theorem to the corner forces.
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CHAPTER III

TREATMENT OF INTERNAL FORCES IN

BLOCH ANALYSIS

In the previous chapter we rigorously arrived at the Bloch transformation Ty. We
next use this transformation to clarify internal forces which arise when analyzing a
single unit cell. We also provide a worked-out example of Bloch wave propagation in

a periodic hexagonal lattice.

3.1 FEquations of Motion and the Force Term

After invoking Lagrangian or Newtonian dynamics, the equations of motion for a

general unit cell assume the form,

Mqg+Kq = F, (45)

in which matrices M and K represents the global mass and stiffness matrix of the unit
cell, q and q represents the (nodal) displacements and accelerations, and F denotes
the (nodal) forces. For plane harmonic waves, q can be replaced by —w?q so that the

equations of motion can be rewritten as:

(~w*M + K)q =F. (46)

For plane waves in a periodic lattice, the Bloch analysis reduces the number of dis-

placements in (46), i.e., we can write
q="Tq. (47)
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Figure 11: Depiction of the nine displacements in a square honeycomb lattice.

In a planar lattice structure, T is a linear transformation parametrized by p, and
t,- For example, in the case of a square honeycomb (Fig. 11), if q,, denotes the

displacements of the unit cell, we have qy,= T,qs, in which:

Qi I 0 O 0
an 0o I o 0
qr 0 Ie*» O 0 - .
q;
ar 0 0 I 0
~ aB
Qsq= qr 5 qu: 0 0 Teta 0 y Asq = (48)
qar
qLB 0 0 0 1
ars
arB 0 0 0 Iet= - -
qrr 0O O 0 Iety
qQRrT 0 0 0 Ie“rﬂy

Note that qrp = e*qrp holds because qgp is the common point for two adjacent
cells: the cells located at nje; + nges and (ng + 1)ey + nges (see Fig. 12), i.e.,

ni,ng ni+1,n2 ni+1,n2 ni+1,n2

dpp - =49q;5 . By the Floquet-Bloch theorem, q; 5 = el=q;z *. These two

equations and similar relations yield (48). In a general case (not square honeycomb),
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eq (47) would result in an equation of motion in the form of (—w?*M + K)Tq = F.
If the external force term on the right hand side of this equation could be eliminated,
it would establish an eigenvalue problem yielding w. We have showed that a matrix
T obtained from T by replacing ,, p,, wWith —p, . —p, will have the property that
TF = 0, where T denotes the transpose of T. For example, for the special case of

the square honeycomb:

0

_ Fg+e ™F
T, Fo= i g , (49)
Fi+e #=Fp

Fipt+e#Frp+e ™wFrr+e v wFpp

Note that others apply the Bloch approach to the forces in (49), and combine it

with the equilibrium condition for the remaining terms in T;qu, and arrive at the
equations,

FT = —e“yFB s FR = —e“yFL, (50)

Frp = —e¢™Frp, Frr=—-c"Frp , Frr = evEF g, (51)

. . =T .
resulting in the desired outcome T, F = 0. This procedure can not be followed,
. 1 .
however. While F(Ln;r Jertnzez _ el F7112¢2 holds, we cannot write Fipist T2 =

iFE-JnéH)eﬁnm in general. In order to investigate this we consider the square honey-

comb lattice structure pictured in Fig. 12.

For the top and right location in the lattice we have:

FT%161+TL262 — _F(BTL1+1)€1+TL262 — _eny%161+n282 , (52)
niei+nae (n1+1)e1+noes niei+nage
FLl 1+nzez _FR _ —€“IFR1 1+n2 27 (53)
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Figure 12: Square honeycomb with ey, es as the coordinate unit vectors and the cells
located at (n1,n2) , (n1+ 1,n2), (n1,n2+ 1) and (ny + 1,n2 + 1) .

which makes the second and third row of TZ;FSq in (49) zero. However, for the right-
bottom, left-top and right-top lattice locations similar equations cannot be derived
because at these corners, more than two cells meet. On the other hand, the equilib-
rium condition at these coordinates together with the Bloch analysis yield (see center

point of Fig. 12)

e tWE g+ e"Frp + e Frr + Frp = 0. (54)

Note that if we multiply both sides of (54) by e #= #v, it will establish the last row

of the Tququ is zero.

Langley has shown that (51) violates the power flow assumption through the
square lattice structure. Here, we show by example that (51) does not hold. However,
we did show in Chapter 3 that T'F = 0 holds in general for cases such as triangular

honeycomb, hexagonal honeycomb and general 3-D structures.
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Figure 13: A hexagonal honeycomb lattice with an internal degree of freedom and
forces

3.2 Analysis of Free Wave Motion in an example

In this example, we consider a hexagonal honeycomb lattice structure (Fig. 13). Each
mass has one degree of freedom; it can vibrate in a direction orthogonal to the plane
spanned by eq, e5 and the springs exert forces outward or inward to this plane. The
internal degree of the freedom and the internal forces are modelled by the internal
mass mg and springs k4 to k9. The arbitrary values for the k’s and m’s are tabulated

in Table 1. For this case:

~ d2 - . - d6
q; = [(11],(1: 7qr:[q4]7 qy:[q5]7 Quy =
ds qr
TetaTHy 0
T, = |:I€‘u’““ O:|7Ty:|:0 Ie“y];Tmy:
0 TetatHy

As it was proved for the general case, equation (13) holds in this case. Utilizing (43),
the dispersion curves for the values of Table 1 for the hexagonal honeycomb were

found (Fig. 14).
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Table 1: Parameters chosen for the hexagonal honeycomb.

miy | e | T3 ]{71 ]{?2 kg ]f4 k)5 k’ﬁ k?7 ]{78 ]Cg
1 12 |3 |[10,2030|40|50|10|20]|30]10

Figure 14: Three w’s versus j1,, and f,, in the case of the mass-spring hexagonal lattice
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Table 2: Comparison between the force Fg; the external force on the cell collocated
with qg, and the force obtained by direct use of Bloch analysis e/« v F,.

Fy 2111 9 | 1711113 107 |16 | 14
elethyFy | -31|-13|-33 16 |-7 |-16|-8 |-8 |-5 |2
Difference | 10 | 14 |24 |11 |18 |19 |18 |15 | 21 | 12

Also external forces on the unit cell collocated with gqg was obtained for ten random
values of q and q; and it is compared with e*= v F, for pu, = p, = 0.5. These numbers
are tabulated in Table 2. It is apparent from this table that the Bloch analysis is not

valid for the forces in this case.

In this chapter, we close the thorough investigation of Bloch relation in systems
with no energy dissipation. In the next chapter we start the investigation of the Bloch
analysis in structures with energy dissipation. We discuss phenomena arising only in

structures with energy dissipation.
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CHAPTER IV

ANALYSIS OF BLOCH’S METHOD IN

STRUCTURES WITH ENERGY DISSIPATION

4.1 Bloch’s Method in Structures with Energy Dis-
sipation

Damping arises in periodic structures via several mechanisms. These include energy
loss caused by internal mechanisms such as crystal defects, grain boundaries and
thermoelastic couplings, or by means of external mechanisms such as interactions
with a surrounding fluid. For several practical applications, the assumption of lin-
ear damping agrees well with experimental results. In micromachined structures, the
most substantial damping comes from air interaction [86] and can be modeled by a
revised mass and an added linear damping term in the equations of motion [87]. The
associated damping coefficient depends on the air pressure [88] and can be obtained
experimentally [89] (See Fig. 15) For small amplitude excitation of micromachined
silicon, it has been shown that the linear damping assumption agrees well with exper-
imental data [90], [91]. Since little work has addressed the effect of damping on wave
propagation in periodic structures, and due to close agreement with experiments, only

linear damping will be considered herein.
4.1.1 Damped Formulation

In any lattice structure, a unit cell is repeated along three lattice vectors a;, a,, a;

[28]. In this chapter, for ease of notation, we investigate planar lattices only; i.e., the
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Figure 15: Quality factor of vibrating beam-microresonator vs surrounding gas pres-
sure for beam sizes of 250x150pum (marked by triangles) and 300x200um (marked
by squares). Solid lines are fit with the linear damping model [92].

unit cell is repeated along a;, a,. Applying a Lagrangian or Newtonian approach, the

equations of motion for the unit cell take the form:

Mg+Cq + Kq =F, (55)

where M, C and K represent the global mass, damping and stiffness matrix of the
unit cell; q, q and q represent the (nodal) displacements, velocities and accelerations;
and F denotes the (nodal) forces on the unit cell applied by neighboring cells in the
structure. Seeking a harmonic solution for the linear differential equation (55), q and

q can be replaced by iwq and —w?q respectively, such that (55) takes the form:

(—w*M+iwC + K)q = F. (56)

Previous work [93], [94] has shown that in an undamped structure, forces can be
removed from the formulation by applying an appropriate operator to both sides of
the equation. This yields an eigenvalue problem and allows for rigorous determination

of the Bloch relation. In (56) however, if F vanishes, the resultant equation would
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Figure 16: Square honeycomb with out of plane motion. For this geometry, q;

a = [Q2], ax - [Q3], ay = [q4]7 awy = [q5] :

[(h]»

not take the typical form of a general eigenvalue problem. To obtain a more desired

form, we transform equation (55) from the configuration space to the state space [85].

The resulting equation can be expressed as:

M*Q + K*Q = F*,

where,

0 M | K C F

M* £ , K £ N O and Q £

K 0 0 —-K 0

By seeking harmonic motions, eq. (57) takes the form:

(iwM*+K*)Q = F*

(57)

(58)

(59)

We now follow an established procedure [94] to formulate a generally-damped

Bloch analysis. First, for each lattice vector V. =nja; +nsas, we define a translational
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operator Ty which upon operating on any function f(r), shifts the argument by V :

Ty : f(r) — f(r+V). (60)

Then with the use of symmetry in the structure, we find the mathematical expres-
sion required for this mapping. As in previous work, x and y represent generally
nonorthogonal axes oriented along the a; and a, directions, and Ty is represented by
T,, T, or T,, when V is equal to a;, a, or a; + ay, respectively. In each unit cell,
we define a minimal set of displacements denoted by q; and q representing internal
and essential boundary displacements, respectively. The remaining nodal displace-
ments can be derived by applying push-forward T,, T, and T,, on q; see Fig. 16
for an example geometry. This establishes a relation between the minimum set of

displacements q;, q and the totality of unit cell displacements q [93]:

in which

(62)

L.e., we can write q as:




where

az = Txa, ay - Tya and axy = Tmyaxy~ (64)
In the same way that we defined push-forward operator T, we can define a pull-back

=T
operator T :

o I o0 0 0 o0
T = : (65)
o1 17, T7, T

—zy

which consists of pull-back operations in the z, y and zy directions denoted by T ,
sz and TT

respectively. Le., TT | T? and TT_ are special cases of Ty when

Y Y -y

V is equal to —a;, —ag, and —a; — ag, respectively. We have shown previously [94]

that:

T F=0. (66)

=T
We next define two new operators Ts and Ty as:

T 0 . | T o
Ts = and Ty = | (67)
0T 0o T
In the same manner that we wrote q in terms of a minimal set of coordinates, we

write Q as:

From egs. (58) and (66), it is easily verified that:

T.F* = 0. (69)
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Consequently,

(iwTsM*+T4K")Q = 0. (70)
We next borrow the same argument used for the undamped case [94]. Equation (70)

holds for any unit cell in the structure, thus it is invariant with respect to any shift,

Tyv((iwT M +TK")Q) = 0. (71)

Due to translational symmetry of the lattice structure,

Ty(TeM?) = ToM* |, Ty (T K*) = T, K. (72)

As a result, eq. (71) is written in the form:

(iwT M +TsK*)Tv(Q) = 0. (73)

Since both Q and Ty (Q) are eigenvectors of the same eigenvalue problem (70), we

conclude that:

Tv(Q) =A(V)Q, (74)

where A\(V) is a coefficient to be determined.

We now examine the properties of the operator Ty,. First we can easily verify

that for two lattice vectors V =nja; + nsas and V'=nsza; + ngas:

Tv(Tv(Q)) = Ty, (A(V)Q) =A(V)A(V)Q. (75)

We can then use the definition of Ty to write:

Tv/(Tv(Q)) =Q((n1 + n3)a; + (ng + n4)az) = Ty v/(Q) =A(V +V)Q.  (76)
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Comparing eq. (75) and eq. (76), we conclude that for a general lattice vector

V =nja; + nsay, A(V) is a power function of V| i.e., eq. (74) is rephrased as:

TV(Q) :62ﬁi(nlk1+n2k2)Q. (77)

The right-hand side of (77) is written in the short form of ¢’V by introducing the
wavevector k = kib; + ksbg, in which b;’s are reciprocal lattice vectors satisfying
b; - a; = 2md;;. Applying Ty on both sides of eq. (59) and using eq. (77), we can

extract the following relation for neighbor forces:

Ty (F*) —e2ritrkitnake) e (78)

Having established the Bloch relation, we can express T,, TT , T,, sz, T,, and
Tzwy in functional form. For the example geometry depicted in Fig. 16, these forms

are given as:

T, — [Iezmkl} . T, = [IGQﬂik‘g} LTy, = [Ie2m‘(k1+k2)] , (79)
T, = [, T, = [t T, = [l ()

—xy -

Note that in the presence of damping the wavevector components k; and ks are

complex numbers:

ky = ki + ki, ky = k3t + iks. (81)

The final equation of motion is:

where
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- q

ds = | (83)
q;
q

Rearranging eq. (82), we get the desired general eigenvalue problem:

P =T ek A~

TSK quS = szSM qus. (84)
4.1.2 Qualitative Discussion

In eq. (84), TE and Tg are functions of k; and k. We are interested in the steady-
state condition for which w is a real number. In the absence of energy dissipation,
wavevectors are real. In this case, k1 and ky are chosen without constraint and we
are guaranteed to get a real w [94]. Also due to the power functional form of the
Bloch relation in an undamped case, T?; and Tg are periodic functions of k; and ks
with period 1. As a result, one can first pick any number of (k;, kq) in [0, 1] x [0, 1],
then establish Tg and Tg, and finally solve the general eigenvalue problem for w. In
this manner, the dispersion curves are plotted. However, as we shall demonstrate in
the next section, in the case with energy dissipation, the choices for k; and ko are
restricted; i.e., only a subset of k%, kI, kF and kI result in real w. It should also
be noted that Tg and Tg are periodic functions of kf* and kZ; however, we are not
guaranteed that all the kI and k£ in the interval [0, 1] result in a real w. Therefore,
previous algorithms designed to obtain dispersion curves cannot be borrowed in whole
since they freely choose (ki,k2) and find w. One must instead design an algorithm

which take as input real w and finds complex wavevectors ki and ks.
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4.2 Investigating Dispersion Curves

4.2.1 One-Dimensional Structures

In this section, for ease of notation and explanation, we start our investigation with
one-dimensional lattices, then we explore lattices with two dimensions. In a one-
dimensional lattice, the wave and lattice vectors simplify to scalars k£ and a, respec-
tively. Analyzing equations of motion in state space allowed us to established the
Bloch relation in structures with damping, and to ultimately find the functional form
Ty. With Ty obtained, we can return to configuration space. As is noted in the last
section, we specify real values for w and seek complex values for k in the following

equation:

T (—w’M+iwC + K)Tq = 0, (85)

T
where q denotes { q q } . Note that T and T are functions of real and imaginary
components of k which are denoted by kg and k;. In order for eq. (85) to be satisfied,

the following condition should hold:

det(T" (—w’M+iwC + K)T) =0. (36)

For each w, the left-hand side of eq. (86) results in a complex expression, and thus
two real equations must be satisfied. For the example structure depicted in Fig. 17,

after simplification these equations are given by:

—w?m + 2K — K cos 2rkp (62“’“’ + 6_2’”’”) — cwsin 2mkp (62“’” — 6_2“’“’) = (87)

200 — K sin 2rkp (e 2™ — ¥ 1) — ¢y cos 2mky (€21 4 e7FR) = ((88)

Eliminating w from the two equations yields:
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Figure 17: A simple mass-spring-damper structure, a is the lattice constant,and K,
C are stiffness and damping coefficient respectively.

mK?sin® 2rkg (y*>—1)+20? K (y cos 2rkp—1)(sin® 27kg (y*—1)+(y cos 2nkr—1)?) = 0,
(89)
where y = cosh 2rk;. For a fixed kg, the left-hand side of eq. (89) is a function of
y which we term z(y). Since the hyperbolic cosine is always greater than or equal to
one, any solution y of eq. (89) should be greater than or equal to one. As is evident
in Fig. 18 for an example kg, as damping increases, this condition is ultimately not
satisfied; i.e., propagation with wave number kg is not possible. This is due to the

graph of z(y) shifting downwards with increased damping,.

Much like the frequency band gap notion well-established in undamped structures,
the behavior described above indicates a wave number gap. In Figs. In Figs. 19 and
20 dispersion curves of the repeating mass-spring-damper structure of Fig. 17 are
depicted. It is evident that unlike the undamped structure, ki does not occupy
every value in the range [—0.5,0.5]. In fact, as the damping increases, the occupation
interval of kr decreases. A second feature observed in the damped dispersion curves is
that for each kg there may exist more than one w belonging to the same branch. This
results from the dispersion curves bending back towards the origin as kr approaches

0.5. Note that in an undamped structure, the number of frequencies for a single kg
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Figure 18: Plot of z(y) for varying values of C' using a fixed 2wkr = 2.4, mass m = 10
and stiffness K = 5.

is determined by the degrees of freedom in a unit cell. This qualitative feature no

longer holds in the damped case.

Another notable feature observed in Fig. 20 is that for frequencies higher than a
certain frequency -in this case approximately 2.3 Hz- the imaginary wavevector of the
higher damping cases becomes smaller than the ones with lower damping ratios. In
other words, increasing damping helps the propagation of the wave. These dispersion
curves were verified by numerical simulation of the equations of motion for a finite
chain. In the simulation, similar to that described in [95], a mass-spring-damper chain
with over one hundred cells was excited by a sinusoidal force at one end. Snap shots
of the mass displacements were taken at a time such that the initiated wave has not
reached the other end. In order to obtain the spatial wavevector, the best function
with least squares error passing through the mass displacements with the form of

—2rk

e *™igin(2rkrr — @) was found. Simulations were run for several input frequencies

and five different damping constants. The simulation results are marked in Figs. 19
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0 0.25 0.5
kr

Figure 19: Dispersion curves for the mass-spring-damper structure of Fig. 17 for
various damping coefficients C' and stiffness K = 5, lattice vector a = 0.1, and mass
m = 5. The real part of the wavevector is depicted here with the simulation results
marked by open circles. As is evident, the real part of the wavevector does not cover
the interval [0, 0.5]. Due to symmetry, only the positive part of the graph is depicted.
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Figure 20: Dispersion curves for the mass-spring-damper structure of Fig. 17 for
various damping coefficients C' and stiffness of K' = 5, lattice vector a = 0.1, and mass
m = 5. The imaginary part of the wavevector is depicted here with the simulation
results marked by open circles. Due to symmetry, only the positive part of the graph
is depicted.

and 20 by open circles. As can be noted, the simulation results agree very well with
the calculated dispersion curves. The simulations also verify the existence of multiple

frequencies at a given real wavenumber.

In the case of undamped structure, we have C' = 0 in eq. (89). Therefore we should
have either {y = 1,kr € [-0.5,0.5]} (implying no decay in the wave amplitude), or
{y € [1,00], kg = 0,0.5]} (implying an evanescent wave). The frequency range for
which kr = 0.5 is termed the stop band(s). However, in the presence of damping,

y # 1 implies k; # 0 for all frequencies.

For structures with more than one mass per unit cell, the set of equations analo-
gous to (87), (88) contain polynomials of w with degrees higher than two. Therefore,
elimination of w becomes intractable. Instead, an alternative solution strategy is

pursued.
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Figure 21: A model of diatomic chain which includes linear damping.

Note that in eq. (86), only T and T are functions of kr and kr. These are push-
forward and pull-back operators in which k;, kr dependence appear as e?™(Fr+ik1) and

o—2milkp+ikr)

. We denote these by z and 1. As a result, eq. (86) is transformed to
a polynomial of x with coefficients which are functions of w and M, K and C' matrix

elements. After solution of this polynomial expression for x, we have:

In(|z[)

kr = — P (90)
arctan( hz{i} )
kr = —2:{}. (91)

in which |z|, Im {z}, Re{z} are the absolute value of x, imaginary and real parts
of x, respectively. This procedure is illustrated for the case of a two-mass structure

depicted in Fig. 21.

The necessary matrices for the system shown in Fig. 21 are:
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mg 0 0 Ci+Cy, —Cy —C4
M 0o m o |,.C=| -0 C 0 |, (92)
0o 0 = -4 0 Ch
K1 + KQ —K2 —K1 q; 0
K — K5 Ky 0 y d = qL ) F = Fr,
—Kl 0 Kl dr FR
Push-forward and pull-back operators are defined as:
10
7 1 00
T=|0 1]|,T : (93)
011
0 x
in which @ = e?™(kr+1)  Using these operators we can determine further that:
_ mo 0 _ Cy +C —Chix — C
T MT — ? T CT = S T (o)
0 m —Cll'il — (Y C1 + Cs
_r K+ K, —Kix — Ky - i
T KT 4 =
—-Kio'- Ky, K +K, qr

Substituting these expressions into the determinant of eq. (86) we find:

Az + B+ Az~ =0, (95)

where:

= iwClKg — w20102 + KlKQ + iWCQK]_ (96)
_ 4

A
B = —w mime + iw3m201 + iw3m102 + iw3m101 + iw3m202 + w2m1K2 + w2m2K1...

+w2m2K2 + w2m1Kl + 2w20102 — QiWchg — inKgcl — 2K1K2.
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Figure 22: Real part of the wave vector for the diatomic chain. Damping in the
structure, has changed dispersion curves.

Equation (95) can be stated as a quadratic equation which can be solved readily
for x(w). Due to the symmetric form of eq. (95), if z is the solution, so is #!. This is
to be expected since one solution results in a right-ward moving wave and the other
a left-ward moving wave. Note that as we increase the number of masses, the order
of w would increase in eq. (96). However, eq. (95) remains unchanged and thus the

procedure described changes little.

Dispersion curves for the example problem of Fig. 21 are investigated in Figs. 22
and 23 for various damping coefficients. These curves demonstrate that damping can
drastically change the character of the branches, the upper branch (optical) shifts
upward at low wavenumbers while it shifts downward at high wavenumbers. As
evident in Fig. 22, the distance between acoustic and optical branches decreases at
high wavenumbers, implying that the evanescent wave has changed into a traveling

wave.
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Figure 23: Imaginary part of the wave vector for the diatomic chain with damping.

4.2.2 Two-Dimensional Structures

For two-dimensional lattice structures, the wavevector has two components along the
directions of the reciprocal lattice vectors. These two components are defined by two
complex numbers k; and ko as in eq. (81). Dispersive relation between frequency w
and the wave numbers k%, k!, kE and k! is defined by (86). In this case, T~ and T are
functions of e2™k1 | e2mike  2milkiths) - o=2miki p=2mike g e~ 2mi(Mtk2) By adopting the
same method we used for one-dimensional lattices, we denote these exponential terms

Ly~ and 27 1y~!, respectively. Equation (86) is then transformed to

by x, y, xy, x~
a polynomial of x and y with coefficients which are functions of the variable w and M,

K and C matrix elements.

For two-dimensional lattice depicted in Fig. 24, the aforementioned polynomial is

stated as:
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Figure 24: Unit cell of a simple two-dimensional lattice with out of plane motion.

1
:c_y(_z v’rKy —22°yK) +4ayK, — 2ix*yw C — 2iy*ow Co — 20Ky + ... (97)

dizyw Cy — 2yKy + 4xyKy + dizyw Oy — 2izw Cy — 2iyw C1 — 4xyw?m) = 0.

Equation (97) identifies the dispersive relation between w and the complex num-
bers z and y. To obtain dispersion surfaces from eq. (97) we pick a real number
w and a complex number y, then we solve the resultant quadratic equation for .
Finally, The wave numbers k%, kI are computed by (90). Similar equation relates

y and kit

, ki. Since there are five variables k¥, kI, k£, kI and w involved in the
dispersion relation, they are plotted in separate graphs. For illustration, we pick two
different values for ki; zero and 3/27. Then x was calculated for several values of k2
and w. We then calculate kI and k] from x and plot them in different graphs. kf®
and kI vs. (w, k&) for kI = 0 are demonstrated in Fig. 25a and Fig. 25b, respectively,
while in Fig. 25c¢ and Fig. 25d the same variables are plotted for kI = 3/27. As
it is evident from these dispersion surfaces, k¥ and k' do not occupy every value in

the range [—0.5,0.5]. This was expected as we observed the same phenomenon in the

one-dimensional lattice. Therefore, as it can bee seen in Fig. 26 the cross-section
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Figure 25: Dispersion surfaces for the structure depicted in Fig. 16 with K; = 1,
Ky =20, =01,C,=02and m = 1. For ki =0, (kl', Kkl w) and (kI ki, w) are
plotted in (a) and (b) while (c) and (d) are the dispersion surfaces for ki = 3/2.
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Figure 26: Symmetry lines I'-X, X-M and M-I" and contour graph of the dispersion
surface depicted in Fig. 25a. It is evident that these symmetry lines do not capture
the extrema values of w.

of the dispersion surface along the symmetry lines I'-X, X-M and M-I" do not cap-
ture the extrema values of w. This requires us to depart from the standard way of

representing dispersion curves only along the high symmetry lines.

For a unit cell with two different masses and diagonal lattice vectors, such as the
one depicted in Fig. 27, the dispersion polynomial relating z, y and w has more
terms compared to the eq. (97). However, it has the same degree for = and y. Thus

the same procedure is followed to calculate the dispersion relation. For this case,
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Figure 27: Unit cell of a two-dimensional lattices with diagonal lattice vectors and
out of plane motion.

kR and kf vs. (w, k%) are depicted for two values of ki in Figs. 28. Similar to the
one-dimensional structure, in these surfaces we observe that for each pair of (kf, ki)

there may exist more than one w belonging to the same surface.

This chapter was the last part of our investigation of the Bloch analysis concerned
with periodic structures. In the next chapter, we first demonstrate that eq. (45) can
also model phonon dispersion in crystals. Then we use the framework we developed
in the previous chapters to derive a method to calculate the maximum number of

wavevectors for each frequency in a dispersion relation.
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Figure 28: Dispersion surfaces for the structure depicted in Fig. 19 with K; = 1,
Ky =2, C =01,Cy =02 m; =5 and m; = 4. In (a) and (b), (kf*, kl*, w) and
(kl, kL&, w) are plotted when kI = 0, while (c) and (d) shows the dispersion surfaces
for ki = 3/2m.
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CHAPTER V

FORCE-CONSTANT MODEL AND NUMBER

OF WAVEVECTORS FOR EACH w

5.1 Introduction

Throughout the previous chapters, we discussed Bloch analysis as applied to wave
propagation analysis of discrete periodic structures. Any unit cell of a periodic struc-
ture can be modelled by a discrete system of equations after invoking finite element
analysis. What’s more, there are structures which are inherently modeled as discrete,
such as crystals. In this chapter we first discuss the force constant model as applied
to the study of phonon dispersion analysis. Later, we investigate the number of wave

vectors for each w in a dispersion relation.

5.2 Force-Constant Model as a Tool to Calculate
Phonon D:ispersion Curves

In this section, we first overview phonon dispersion curves of crystalline materials,
and then a mass-spring model is presented as a tool with which we can reproduce

experimental results.

In the investigation of phonon dispersion curves of crystals, there have been differ-
ent approaches; semiempirical, and ab initio, or first-principle, calculation. In some
semiempirical approaches, the model relies to some extent on experimental charac-

terization of force field parameters. Phonon dispersion curves are experimentally
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Figure 29: Semiempirical potential between two helium atoms; solid line by Aziz et.
al. [17] and Lennard-Jones with ¢ = 10.22 K and o = 2.556 A (dashed line) [18]

obtained by means of neutron scattering [14],[15] or Raman spectroscopy [16]. Inter-
action potentials and forces are then assumed in functional form, for example by a
power function. The constants of these functions are found by fitting the experimen-
tal results with the theoretical calculation. The Lennard-Jones (LJ) potential and
the Morse potential are two commonly used potential models. The Lennard-Jones

potential is stated as:

vor=1e[(©)" - ()] o

where r is the distance between particles, ¢ is the distance at which the potential is
zero and € is the depth of the potential well. These parameters are found to fit the

experimental data. Two such attempts for helium are depicted in Fig.29.

The Morse potential is stated as

V(r) = De(1 —e )2, (99)

in which a controls the width of the potential, and D., r, r. denote the well depth
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Figure 30: Morse potential function when D,, r. and a are equal to one.

and the distance between particles in the nonequilibrium and equilibrium situations,

respectively. An example of this potential is depicted in Fig.30.

Since in the semiempirical approach we rely on experiments to determine the
coefficients of fitting functions, they are inherently ad hoc, and experiments have to
be performed for each material. In contrast, when we use the ab initio method, all the
calculations are based on the laws of physics, such as quantum mechanics and density
functional theory [19]. Although this method is more general, it is a computationally

costly method, and in most cases it is overly complicated.

As is evident in Figs. 29 and 30, the potential energy function resembles a
quadratic function when the particles are close to the equilibrium position. Hence,
in the semiempirical calculation of phonon dispersion curves, the potential energy
between the particles is assumed to be quadratic. In this kind of model - called force
constant model - forces are represented by linear springs and then the spring constants

are found by fitting the theoretical phonon dispersion curves with the experimental
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Figure 31: Phonon dispersion curves of graphene claculated by the force constant
model, taking into account up to the fourth nearest neighbor interaction [22]. Exper-
imental results marked by circles, obtained by energy loss spectroscopy [23],[24].

dispersion curves.

Generally speaking, in a semiempirical method, it is assumed that particles sep-
arated beyond certain cut-off distances, have negligible force effect, and hence it is
safe to omit them in the calculation. It is however, the matter of best fitting that
dictates the cut-off distance. Jishi et al. [20] showed that to calculate phonon dis-
persion curves for graphite, it suffices to consider the interaction of atoms up to the
fourth nearest neighbor, both interplane and intraplane. A model with less than a
fourth nearest neighbor cannot reproduce the experimental results. The same fourth
nearest neighbor model has been shown [21]-[22] to agree well with the experimental
results for graphene, C-60 and nanotubules. Fig. 31 shows the experimental results
and dispersion curves of graphene obtained by the force constant model which in-
cludes up to the fourth nearest neighbor. Fig. 32 shows similar results obtained by

the Matlab code in the appendix. As can bee seen in this figure, the force constant
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Figure 32: Phonon dispersion curves of graphene claculated by the Matlab code in
the appendix which utilizes force constant model

model, although simple in principle, can produce complicated dispersion curves which

characterize phonon dispersion curves of nanostructures.

5.8 Number of Wavevectors for each w in a Dis-
persion Relation

5.3.1 Introduction

In the previous chapter we considered simple (i.e., nearest neighbor interaction) one
and two-dimensional structures which eq. (86) expressed as polynomials of degree
two. In this section we investigate the degree of polynomial in general cases. In
a bimaterial chain (or diatomic crystal chain), if we consider the nearest neighbor
interaction only, the optical and acoustic branches are monotonic; meaning that for
each w there would be only one corresponding positive wavevector in the first Brillouin
zone [26] as is evident in the dispersion curve for an example diatomic chain in Fig.
33. If we increase the number of interactions or consider two-dimensional lattices,
there might be more than one wavevector corresponding to each w. This fact was

first investigated in a rigorous way by Brillouin [28] for a simple monatomic chain.
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Figure 33: Optical and acoustic branches in the dispersion relation [27]. It is evident
that the dispersion curves are monotonic.

We reinvestigate this fact for structures with damping; also we would extend our

investigation to structures with two or three dimensions.

5.3.2 Number of wavevectors for each w

Recall from the previous chapter that the displacements of a unit cell can be stated

as:

a= | q |- (100)

where

q =T,q, q,=Tyq and q,y = T;yqsy. (101)
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In this section, we partition mass, stiffness and damping matrices accordingly, i.e.,

the mass matrix is expressed as:

M, O 0O O 0
0 M, 0 O 0
M=| 0 0 M, 0 0 |, (102)
0 0 0O M, O
0 0 0 0 M,
and stiffness and damping ma-trices are in the form: )
Ki K Ki Ky Kiy
K/, K. Kun Ki Ko
K=| K, K., K. K, K. |; (103)
and _ -
C Cm Ci Gy Gy
Ccl, C, C,. C, Cuuy
C=|cl Cl, C C, Cu (104)

C
c), C., CI, C, Cu

T T T T
Ci:vy mey Cxwy Cy;ry Cﬂ“?/

Note that the elements of the mass, stiffness and damping matrices are matrices
themselves properly dimensioned. For example, if q; and q, are n x 1 and r x 1,
respectively, then K, is n x r. Similar to the previous chapter, the dispersion relation

is expressed as:

det(T" (—w?M+iwC + K)T) =0, (105)
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in which T is a function of  and y, and T’ is a function of 2~ and y~ L. Tt should
be pointed out that = and y stand for e>"*1and e**2 in which k; and k, are the
complex wavevectors. In structures with no energy dissipation, the number of tem-
poral frequencies w for each wavevector depends on the degree of freedom of a unit
cell. In other words, the number of dispersion branches equates to the degree of
freedom of the unit cell. For example, as we saw in the first chapter, the phonon
dispersion curve of graphene has six branches since a unit cell of graphene consists
of two atoms of carbon, and each atom has three degrees of freedom. However, in
experimentally-obtained graphene dispersion curves, unlike Fig. 33, there is more
than one wavevector corresponding to each w. This is because graphene is a two-
dimensional lattice, and also each atom interacts with not only its closest neighbor,
but also up to the fourth nearest neighbors. Consequently, in the proposed force-
constant method, the stiffness matrix K is a banded matrix with more than three
non-zero elements. In this section we investigate the relation between the maximum
number of wavevectors for each frequency, and the dimension of mass and stiffness

matrices.

The key to this relation is the degree of x and y in the polynomial of eq. (105).
In order to investigate the degree of x and y in the polynomial, we first decompose
T and T into terms which include z and y and terms which are not functions of x

and y. Matrices T and T' are in the form of:

I 0
0 I
T=|o T, |, (106)
0 T,
0 T,

and:
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o I 0 0 0 0
T = : (107)
o1 17, T7, T

—xy

in which T,, Ty, T,,, T',, T and T’ are push-forward/pull-back operators.

Note that all the elements in T, have the term e***!, which we call z. There is no
term in T, without x; also there is no term with higher powers of x. As a result, we
can factor out z from T,. By the same argument, we can factor out y, xy, =%, y=*
and z~'y~! from Ty, T,,, T',, T" and TT respectively. We then rephrase these

matrices as:

T, = 2T,, TL =2'T" (108)
T, = yT, T, =y T, (109)
sz = xyr]\jwyﬂ Tizy:x_ly_lj\jimy‘ (110)

T:c = I@zﬂ-ikl 0 :| =T |: I10 :| ) (111)
:[67271'1'](51 I
T, = = : (112)
0 0
Ty — 0 I€2mk2 :| =Y |: I10 :| 5 (113)
167271'1'](72 I
T', = =y ! , (114)
0 0
Le2milhithe) 0 I o
T, = =y , (115)
0 IeQm’(kl-i-kz) 01
Ie27ri(k1+k2) 0 1 0
T:fmy = =yt : (116)
0 I€Q7ri(k:1+k2) 01
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Figure 34: A hexagonal honeycomb lattice in which q; = [ql q2 }T, q =
T ~ ~ ~ T
[ q3 d4 } , A = [95], qQy = [q6), ey = [ qr Qqs ] .

Since the pulling-back and pushing-forward operations in the e; direction are embed-

1

ded in z and 27", it can be easily verified that:

e (117)

the same relations hold for the other operators:

TZ =77, and T2, =TT (118)

—zy”

Let D :TT(—wQM—H’wC + K)T, then by substituting M, C, K, T and T’ with
(102)-(104) and (108)-(110), we get:
D= , (119)

in which:
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Dy = —wM; +iw C; + K, (120)

+ (ZW Cixy + chy) xyrfxya
T7 (iw CL + KT) . T7 (iw CL + KT)

Dy, = iwCl +K! + (122)
T Yy
+T£y (Zw Clj;y + Kz;y)
Ty ’
Dy = —CUZMm +iww C, + K, + (Zw Conz + Kmx) xr/I\‘m (123)

+ (iw Cny + Kmy) yr/fy + (iw Coay + mey) xy'/fwy

+T7( = WM, +iw C, + KT, + T7 (iw Coay + Kaay) yTay
+’/I\‘f (iw C%x + K%w) +’T‘Z (iw Cyy + Kuy) y'f‘y

xr T
+TT(— WM, +iw C, + KT, + T7 (iw Cpuy + Kyy) 2T
T] (iwCL, +K.,) N T] (iwCI, + KT ) 2T,

Y Yy
T (iwCT + KT N N

+ Ty ( mxy mmy) + Tfy( o W2Mmy 4w ny 4 Kmy)Txy

Yy
+Tfy (iwCL,, +KZI )T, N TZ, (iwCL,, + KL, ) yT,

Yy X

+

Di; and D;5 have the same row dimensions; also D5 and Dy have the same number
of columns. Our goal is to determine the highest degree of x and y in the determinant
of D. Using the Leibniz formula to calculate the determinant (see appendix), each
term in the polynomial of det(D) consists of exactly one element from each row and
column. Thus, in order to get the highest power of x and y, in each row/column, we
pick the term with the highest power of  and y. Now it is noted that Dy; and D

do not contain any term with positive powers of x or y.
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In general, dispersion analysis is performed in the following Brillouin zone cases:

x varies while y is a constant number

y varies while x is a constant number ¢,

y=

in which a can assume any real number. However, in most of the dispersion curve

analysis, only the boundary of irreducible Brillouin zone is considered, meaning that

the w is calculated for the the first two lines and third line with one value of a. In the

example of a square lattice, these lines are noted by I'-X, X-M and M-I, in which the

line M-I" corresponds to the third line with @ = 1. In our representation, we can cover

more of the Brillouin zone by picking more values for a. We investigate the degree of

x or y on each of these lines separately.

5.3.2.1 First line: x varies while y is a constant number

On the first line in which y is constant, we will show that the = degree in the det(D)

is bounded above by:

Rank (ﬁx) ,
in which,
~ Dl:):
Dx - y
DZ:J:
and

Dy, = (iwCi+ Kip) Ty + (iw Ciay + Kiny) Ty,

D2x - (Zw Cmr + Kmm) Tw + (lw Cmry + Kmmy) r/I\‘zy

+T7 (i Cyay + Kyay) Tay + T (iw CT + KL ) T,

67

(124)

(125)
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Note that Dy, and D, consist of those terms in D5 and Dy, with dependence on x.
On the line I'-X the variable y assumes a constant value, hence the only remaining

variable is x. Assuming damping is zero whenever stiffness is zero, we can replace

Dy, and D,, by:

!/

1x

(128)

/

K
D,, = KT, +KpyToy+ T, Ky Toy + T, K] T,
without changing the rank of ]A)x

In order to show that on the line I'-X the determinant of the matrix D is a function
of x with highest power defined by (124), we use the Leibniz formula. First we make

an augmented matrix by matrix D next to f)w:

D;; Diyy | Dy,
Doy = : (129)

Dy Das | Da,
The determinant of D in (119) remains constant by any sequence of row operations.
We can apply a sequence of row operations on D,,, to make f)m a row echelon matrix.
Note that due to the relation between f)ﬁ and D15, Das, by making f)m a row echelon
matrix, the second column of D becomes a row echelon matrix in terms of z, meaning
that any row or column has at most one entry with x. This is clarified by an example
later in this section. According to the Leibniz formula, any term in the determinant
of D has exactly one element from each row and column. Since Di; and Ds; do
not contain any positive power of x, the highest power of x ir; det(D) is achieved
by choosing from each row the leading entry of { D, Do } with z. It can be
shown [96] that the rank of a matrix equals the number of non-zero pivots of a row

echelon form of that matrix. Consequently, the highest power of = in det(D) equals

to Rcmk(ﬁw). It should be noted that due to symmetry, both = and z~! are roots
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of equation det(D) = 0. As a result, in det(D) = 0, we can multiply both sides by

x to the power of Rank(D,) to obtain an equation in which the left hand side is a

polynomial of = with power of 2Rank(D,).

To illustrate the proof, first we consider a simple matrix and then an example

structure. In the following matrix,

1 2 x 20 4 2 2
4 5 2 0 3
2 2 r+1 r+3 1 ; (130)

241 54+2 3x4+1+2 3z+1 5

1 243 4 1 248
we have
1 2 T 20+2 2
Dy = |4 5]|,Dp= 2 0 3. (131)
2 2 r+1 x+3 1
241 542 3x+14+2 3z+1 5
Dy = , Doy =
1 245 4 1 248
Then D, and D,, are:
1 20
330
D=0 0 0], D= ) (132)
000
1 10

which makes Dy, in the form of

69



1 2 v 22+2 2120
4 5 2 0 3/000
Doy =| 2 2 x+1 z+3 1|1 10 (133)
2+1 542 3241 3z 5|3 30
1 243 4 1 21000

After making the right matrix a row echelon matrix by row operations, we get the

matrix:

3 2 T+ 2 4 0 [100

~1 0 -1 z-1 1 [010

4 5 2 0 3 1000 (134)
—4+1 —1+2 242 942 2 [0 00

1 2432 4 L 2+21000

Evidently, in (134) the rank of the right block matrix is two. It can also be verified
T

easily that Rank( [ D, Do } ) is also two. There are two nonzero columns on the

right block matrix which correspond to two columns (third and fourth) on the left

block matrix containing x. The determinant of matrix D is:

_ 5a* +492° 4+ 1312° + 1272 + 75
= = ,

det(D) (135)

Multiplying both sides by 22 we obtain an equation with x to the power of four which

agrees well with that expected.

This relation between the rank of ]A)x and the x power can also be investigated
in the structure depicted in Fig. 35 with out of plane motion. Damping terms have

been omitted for simplicity of notation. For this structure we have:
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a,

Figure 35: Unit cell of a periodic system with four internal masses

a2 - -
qQ = Yy A= | q5 |9 = | qs |>

B = e || ],

and

I 0O

0 1
T=10 2z |,

0 y

0 xy

in which I is a 4 x 4 matrix. Mass and stiffness matrices are as follows:
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Yy

and

Using eq. 128,

Dlr

K +K,+K;5 -Ky
-K, K; +Ky+Kg
0 -Ks
I -K, 0
] ©
" , Kip = ’ ;
0 -K;
L _Kg . L 0 .
Ko, Koy =0, Ky
K.z = -Ky,
my 0 0 O
0 mg 0 O
0 0 mg O
Mo 0 0 0 my
0O 0 0 o0
0O 0 0 O
0O 0 0 O
0O 0 0 O
0 | | 0 ]
! x 1+ Ks X 1=
-K; 0
0 | i 0 |
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0 K
K, 0
Ko+ Ky+Kr oKy ’
-K3 K3+K,+Ky |
[ K, | [ 0
Ky=| | K= |
0 0
| 0 | 0
-Kyo,
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ms 0 0 0
0 ms 0 0
0 0 ms 0
0 0 0 ms
o
K
) D2:B = _2K10_K9-
_K7
L 0 n

(136)

(137)

(138)



Then:

P)
I

-2Ky0-Ky

(139)

Since f)x is a column matrix, its rank is obviously 1. Then the final polynomial in

terms of z should be of power two. Matrix D takes the form of:

in which:

D21

D12

D22

Dy;; Dy
D= ,
Dy Dy
K +K,+K; K, 0
-K K +Ko+Kg -Ks
0 -Ky Ko+ K3+ K-
-Ky 0 -K;

Determinant of D takes the form:

K5 ‘I’KG —|—K7 +K8 —|—4K9 —|—4K10—2K10$—2K9 y—|—
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_K3
Ks+Ky+Kg

-2Kyp
T

-2Ky

_|_

(140)

, (141)



2A B 2
det(D):[$( + y)—l—y(C—i—Dm)jLExy—i—Fx%—Gy]’ (142)
Y

in which A, B, C, D, E, F and G are constants. For example (obtained using a

symbolic manipulator),
B= -2K1KgK3KgK10-2K1K5K3K4K10-2K1KgK3K4K109-2K5KgK3K4K10-K1 K5 K7K3Kg-2K1KoK7K4K1¢
-2KoK5K3K4K10-K4KgK7K3Kg-K1 K4 K7K3Kg-2K4KK3KgK10-2K4KgK7KgK10-2K4KgK7K3K10
2K5KoK3KgK10-2K4 K1 K3KgK10-2K4 K1 K7KgK10-2K4 K1 K7K3K10-2K5KoK7KgK10-K5KgK7K3Kg
-2K4KeKoKgK10-K1 KoK7K3Kg-K1 KgK7K3Kg-2K4 K1 KoKgK10-K1KgK7K4K5-2K5K1KoKgKi(
-2K5K1 KoKy K10-2K5 KoK7K3K10-K5KoK7K3Kg-2K5KKoK3K10-2K1 KgKoK3Ky9-K1KoK4K7Kg
-2K5KeK3KgK10-2K5 K K7K4K10-2K5 K K7KgK10-2K5 K6 K7K3K10-2K5 K KoKgK10-2K5KgKoK4K1g
-2K5K1KoK3K10-2K5 K1 K3KgK10-2K5 K1 K7K4K10-2K5 K1 K7KgK10-2K5K1 K7K3K10-K1KgK7K3K5
-K1KgK3KgK5-K1KgK3K4K5-K4KgKoK3Ky-2K1 KgK7K4K10-2K1 KgK7KgK10-2K1KgK7K3K 10
2K1KgKoKgK109-2K1 KgKoK4K109-2K1 KoK3KgK10-2K1KoK7KgK10-2K1KoK7K3K109-2K1 KgK7KgKs
2K1KgK9oK3Ky-2K1KgKoKgKy-2K1 KgKoK 4 Kg-2K4KoK3KgK10-2K4KoK7KgK10-2K4KoK7K3K 1

-K4K9oK7K3Kg-2K4KgKoK3K10-2K5KoK7K4K1(

For varying x and constant y, eq.(142) can be multiplied by = to obtain a quadratic
equation in terms of x. This verifies the result we obtained by calculating Rank(ﬁx).
As is evident from the constant B, eq. (142) has many terms which make it com-

putationally costly to calculate. On the other hand, the procedure of calculating

Rank‘(f)gc) is simple and does not require the handling of constants with many terms.
5.3.2.2  Second line: y varies while x is a constant number

For the second line, we borrow the same argument we used in the previous section.

It can be verified that the y degree in the det(D) is bounded above by:

Rank (ﬁy) , (143)
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in which,

. D
D,=| " (144)
D,
and
Dly = (zw Ciy + sz) r_/ﬁy —|— (zw Cixy + Kzacy) Tacyv (145)
Dy, = (iwCpy + Kumy) Ty + (1w Cony + Kinay) Ty (146)

+T7 (iw Couy + Kaay) Toy + T (iwCL, + KL ) T,.

As before, assuming zero damping whenever stiffness is zero, we can replace D, and

D,, by:

/

ly

iny + KizyTa:yv (147)

!

2y

3
<
)

y T szyTxy + Tfoxyfxy + TgKgyTy’

without changing the rank of f)y.
5.3.2.8 Third line: y = x°

On the third line, y = z*. Here, for the ease of explanation, we first consider y = x
before moving on to the more general case. The relation y = x makes all the xy
terms in matrix D into power two terms of x; namely 2. As a result, in estimating
the highest power of x in the det(D), we count the number of xy, and x or y, in a
different fashion. This subtle process needs much attention. On the line y = z, the

variable y is represented by x. We define:

D, = , (148)



in which

Dla:p = (zw Cm + Km) TI + (zw Ciy —+ sz) Ty,

Dywe = (iw Crg 4+ Kng) Ty + (iw Cpy + Kiny) T,

+T7 (iw Cray + Kiaay) Tay + T (iw Cpy + Kyy) Ty

Note that IA)M; includes those terms with power one of . Then we define:

in which

Dlmy - (zw Cixy + szy) rf[\‘a:ya

Dyyy = (iw Crugy + Kingy) Tay-

Then we show that the power of x in the det(D) is bounded above by:

2 X Rank (]A)xy> - (Rank (ﬁxy + ﬁ@g;) — Rank (ﬁxy>) ;

which can be simplified to:

Rank <f)xy> + Rank <f)zy + IA)M,> )

(149)

(150)

(151)

(152)

(153)

(154)

(155)

The rationale behind (155) is explained through an example. Consider Matrix A

as follows:
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8
2o
_I_
8
[a)
]
]

x 0 0 22

x? 0 =z ¢ =z

(156)

Considering only the variables z and 22, matrix A has rank four. Matrices A, and

A, consist of those elements with = and 22, respectively. They are:

in which we have:

Rank (A;) =3, Rank (A,,) =3, Rank (A, + A,,) = Rank (A) = 4.

The determinant of A can be verified to be:

det(A) = (2° + 2)2*(1 — ),

which is a polynomial of degree 7. Also,

Rank (A,,) + Rank (A, + A,,) = Rank (A,,) + Rank (A) =3+4="1.

10000 10000
00000 10010
A,=100100]|,Ay=1]10 0 0
00100 10011
10001 00010

(157)

(158)

(159)

To illustrate the reason for (155), we first make the matrix A into a row echelon

matrix in terms of 22, This process uses row operations and hence does not alter the

det(A). After these row operations matrix A takes the form:
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0 -1z 0 2*|. (160)

—x O = 0 O

2c -1 0 0 «x
Column operations do not alter the determinant. We perform column operations such

that the columns containing pivots are arranged next to each other, i.e.,

2+ 0 0 0 0

0 0 = —1 22 |, (161)

and,

0 0 22 -1 x |- (162)
—x 0O 0 0 =«
2x 0O = -1 0

In calculating the determinant of (162) by the Leibniz formula, the highest degree of

x is achieved by picking 22 from the first three columns and rows. We perform row

operations further to make the corner 2 x 2 matrix

, (163)
10
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a row echelon matrix in x. This is already a row echelon matrix. Note that the

number of linearly independent rows in this 2 x 2 matrix equals to:

Rank (A, + A,,) — Rank (A,) =4—-3=1. (164)

This procedure can be followed for A with any size.

Following the same procedure, it can be shown that for the case of y = z%, the

power of x in the det(D) is bounded above by:

(a+1) x Rank (]/jxy) + (Rcmk (f)xy + ﬁam) — Rank (f)xy>) . (165)

5.3.3 Investigating Phonon Dispersion Curves in Boron Nitride

Boron Nitride is a chemical compound which cannot be found in nature and hence is
produced synthetically from boron acid or trioxide. It consists of equal numbers of
boron and nitrogen atoms and exists in different crystalline structures. Very similar to
carbon compounds, it has a hexagonal form (h-BN) like graphite, and a cubic form (c-
BN) like diamond. Among other applications, the hexagonal form is used as lubricant.
Unlike graphite, h-BN can perform as a lubricant without molecules of air or water
trapped between its layers. Compared to diamond, c-BN has superior thermal and
chemical stability. Similar to carbon nanotubes, there exists BN nanotubes. They

have been theoretically predicted [97] and experimentally verified to exist [3].

In this section we use formulas developed in the previous section to show that
phonon dispersion curves of h-BN cannot be reproduced by considering only the
nearest neighbor interactions. The theoretical phonon dispersion curves of h-BN are
obtained by ab initio calculation. Each unit cell of h-BN consists of 18 atoms in three

parallel hexagons, three nitrogen and three boron atoms in each hexagons. Each atom
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Figure 36: Boron nitride in its hexagonal crystalline form (h-BN), and the unit cell
displacements.

can move in three directions, so in our formalism we have:

qi
- q2 qs qr 9
q = , Qo= , qy= , Q.= ,  (166)
qs3 d6 as d10
— q4 =
qi11
q12 qi7
oy = y Q2= [q15]7 Qy-= [q16]7 Qzyz= y
q13 q1s
| 14 |

in which q;, j = 1..9 are vectors of length 3. There is no internal masses, so we
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eliminated q;. For the transformation matrices, we have:

I1 00O 0OI 0O
T, = =z T, =y : (167)
0 0TI O 0 0 0TI
I1 00O
I 00O 0I 0O
Tz = Z2 y Tmyzajy 5
0OI 0O 0 0TIO
0 0011

T,. = 962[1 00 0},Tyz=y[0 10 0},

I 00O
T,,. = xyz
0OI 0O

There is no internal mass, hence there is no K;, K;,,,, K;z, K;y, Kiz,,. On the other
hand, the crystal is three dimensional and direction z is orthogonal to the hexagonal

plane and must be considered. As a result, D;m takes the form:

’

D2 = Kmx’/fac + Kmxy’i\‘:r:y + Kmxz’/fxz + Kmmyzrf[\‘xyz + Tg(KfyTx + nyyr/fxy

+nyszz + nyyz’/fmyz) + Tz(KZZTx + szyTry + szzTrz + szyzri\‘xyz)

Txy + KT ’/I\‘QTZ + Kyzwyzr/faryz) (168)

T2YZ

+TT (KT T, + K7,

TYZ TYYZ

Considering only the nearest neighbor interaction, most of the terms in (168) would

be zero. After manipulation, (168) takes the form:

0O 0 0 O
, Ky 0 0 O
D,, = (169)
0O 0 0 O
0 0 Kz O
in which K4 and Kpg are some 3x3 matrices. Consequently
Rank (ﬁw> — Rank (D,) = 6. (170)
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Frequency (THz)

A r M r

Figure 37: Phonon dispersion curves of h-BN calculated by Wang et. al. [100] (solid
lines) and X-Ray scattering (circles) by Serrano et. al. [101]. The close-up of the
blue box is depicted in Fig. 38.

This means for each w there would be no more than 6 wavevectors when we consider
only the nearest neighbor interaction. However, as it can be seen in Fig. 38, there is

a range of w’s for which there corresponds more than six wavevectors.

This last result indicates nearest neighbor interactions beyond the first neighbors
are important for characterizing dispersion in crystalline structures. In future work,
we intend on applying the insight gained to explore the number of nearest neigh-
bor interactions necessary to accurately characterize dispersion in commonly studied

crystalline structures.
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Figure 38: A close-up of the h-BN phonon dispersion curves depicted in 37. Evidently,
the green line intersects the dispersion curves seven times.
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CHAPTER VI

CONCLUDING REMARKS

6.1 Conclusions

In periodic lattice structures,wave propagation on the infinite domain can be greatly
simplified by invoking the Floquet-Bloch theorem. This theorem allows a system’s

degrees of freedom to be reduced to a small subset contained in a repeating unit cell.

This dissertation contributes several new insights into the development and use of

Bloch analysis in structural wave propagation.

e We demonstrated that for any two- or three-dimensional periodic lattice, the
internal forces vanish when acted upon by the linear transformation engendered
by the degree of freedom reduction, and this transformation results in an eigen-

value problem.

e We demonstrated the existence of a "propagation constant" in the resulting
eigenvalue problem. This procedure links the Bloch theorem and the previously
used "propagation constant" technique in the elastic wave propagation analysis

of discrete structural systems.

e We showed that the translational invariance of the structure is not a sufficient
condition for applying Bloch’s theorem. In nonlinear systems, one needs to be

cautious in applying Bloch’s theorem.
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e By constructing a simple asymmetrical counter-example, we added to growing
evidence that considering only the boundary of the IBZ may lead to erroneous

predictions concerning the magnitude of band gaps.

e We investigated the Bloch analysis in structures with linear damping and rig-

orously found the Bloch relations for structures with energy dissipation.

e Using Bloch analysis in structures with linear damping,

— We demonstrated that damping may introduce wavenumber band gaps.

— The existence of two or more temporal frequencies for each dispersion curve

and wavenumber was documented.

e A general framework for calculating dispersion curves in structures with damp-
ing has been proposed and investigated in example one and two-dimensional

lattice structures.

e A framework was developed to predict the maximum number of wavevectors for

each w in the characterization of dispersion.

6.2 Future Work

There are numerous opportunities and unanswered problems in the area of band
structure calculation. Overcoming these theoretical obstacles can greatly enhance
our understanding of wave propagation in periodic structures for use in new filters
for acoustic or ultrasonic waves. Here we summarize just a few of them which are

reasonable continuations of the thesis work.
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We use finite elements to come up with the mass and stiffness matrices. As we
decrease the mesh size, we increase the size of the mass and stiffness matrices, and
hence we have more branches. It is not difficult to see that the new branches populate
the higher temporal frequencies. In other words, as we add to the size of the mass and
stiffness matrices, the structure can accommodate higher frequencies. However, we
are also aware that the lower branches will change slightly as well, leading to changes
in the width of the band gaps. Note that a band gap width is not necessarily the gap
between two branches at the same wavevector. Recall that w? is the eigenvalue of the
equation of motion for a fixed wavevector. As a result the band gap width is not the
difference between two eigenvalues of a matrix; it is in fact the difference between the
eigenvalues of two different matrices. This makes it difficult to see that as we decrease
the mesh size, we are guaranteed to not change the band gap drastically. This is of
great importance in the optimum designing of the band gap in a continuous periodic

structure.

In recent publications, there are numerous methods to optimally find the maxi-
mum band gap. In an optimization problem, we want to find - at the very least -
the local minimum of a function, say f(z,y). If we can calculate the gradient of f |
we can start from any point (xg,yo), then take steps in (Ax, Ay) proportional to the
negative of the gradient of f. The issue with band gap optimization, is that the band
gap is in fact the difference between eigenvalues of two different matrices. In other
words, we have

THKT(K)q = — w*T/MT(k g (171)
in which Kk is the wavevector. Then the band gap is the difference between the w's
when X equals to two different wavevectors, say IZ and l?; The problem is, when
we change mass and stiffness matrices, everything would change, including IZ and 1?2)
This makes the steepest descent method extremely difficult to implement. There have

been efforts to solve similar problems [102]; however, this problem for the dispersion
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band gap has not been addressed fully.
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APPENDIX A

GRAPHENE DISPERSION CURVE: MATLAB

CODE

This code generates graphene dispersion curves by considering interaction up to the
fourth nearest neighbor. Stiffness coefficients are obtained from [25], page 169. Each
unit cell consists of tow atoms which are called A and B. In the case of atom A, only
the second nearest neighbors are type A; first, third and fourth nearest neighbors
are type B. Stiffness values are for principal directions. For other directions, stiffness
matrices can be obtained by transforming the original stiffness matrix into the new
coordinate system.

function f = FFphonon

cle; clear all; warning off all

CarbonCarbon=1.44;

a=CarbonCarbon*sqrt(3);

cc=[CarbonCarbon 0 0]’;

al=[sqrt(3)*a/2,a/2,0]’;

a2=[sqrt(3)*a/2,-a/2,0]’;

b1=[2*pi/(sqrt(3)*a),2*pi/a,0]’;

b2=[2*pi/(sqrt(3)*a),-2*pi/a,0]’;

M=1.9926¢-026;

c = 299792458; % speed of light in m/s

% the Brillouin zone boundary vectors

GM=(b1+b2)/2;
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MK=(b1-b2)/6;

KG=-(GM+MK);

%%

% force constants parameters for 2D graphite in units of 1074 dyn/cm
% (from Saito Dresselhaus book page 169)

phi_rl = 36.5; phi_1ti= 24.5; phi_lto= 9.82;

phi 12 = 8.8; phi_2ti = -3.23; phi_2to = -0.4;

phi_r3 = 3.0; phi_3ti = -5.25; phi_3to = 0.15;

phi_ r4 =-1.92; phi ti4 = 2.29; phi_4to = -0.58;

K1 =[phi r100

0 phi_1ti 0

0 0 phi_ 1to];

K2 =[phi_r2,0,0;0,phi_2ti,0;0,0,phi_2to];

K3 =[phi_r3,0,0;0,phi 3ti,0;0,0,phi_3to];

K4 =[phi r4,0,0;0,phi ti4,0;0,0,phi_4to];

%%

% Vectors from the atom A to its neigbours

RA1=(rotationv([a 0 0]’,1*pi/6)); RA2=(rotationv([a 0 0]",3*pi/6));
RA3=(rotationv([a 0 0]’,5*pi/6)); RA4=(rotationv([a 0 0]’,7*pi/6));
RA5=(rotationv([a 0 0]’,9%pi/6));RA6=(rotationv([a 0 0]’,11*pi/6));
RB11=(rotationv([CarbonCarbon 0 0]’,0*pi/3));
RB12=(rotationv([CarbonCarbon 0 0]’,2*pi/3));
RB13=(rotationv([CarbonCarbon 0 0]’,4*pi/3));
RB31

RB32

(
(
(rotationv([2*CarbonCarbon 0 0]’,2*pi/6));
(rotationv([2*CarbonCarbon 0 0]’,6%pi/6));
(

RB33=(rotationv([2*CarbonCarbon 0 0]’,10*pi/6));

% distance from atom A to the fourth neigbour B is: norm([CarbonCarbon 0 0]+al)
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fou=norm(|CarbonCarbon 0 0]'+al);

fourn=[fou 0 0]’;

% The angle between the fourth neigbour B and the x axis is calculated
% as a=CarbonCarbon*sqrt(3); al=[3%a/(sqrt(3)*2),a/2,0];

% theta = atan((a/2)/(CarbonCarbon+3*a/(sqrt(3)*2))=atan(sqrt(3)/5)
teta = atan(sqrt(3)/5);

RB41=rotationv(fourn,teta); RB42=rotationv(fourn,2*pi/3-teta);
RB43=rotationv(fourn,2*pi/3+teta); RB44=rotationv(fourn,4*pi/3-teta);
RB45=rotationv(fourn,4*pi/3+teta); RB46=rotationv(fourn,2*pi-teta);
%%

% Vectors from the atom B to its neigbours, we use the corresponding

% vectors w.r.t the atom A

RB1=RA1; RB2=RA2: RB3=RA3: RB4A=RA4; RB5=RA5; RB6=RAG:
RAll=rotationv(RB11,pi/3); RAl2=rotationv(RB12,pi/3);
RA13=rotationv(RB13,pi/3); RA31=rotationv(RB31,-2*pi/6);
RA32=rotationv(RB32,-2*pi/6);RA33=rotationv(RB33,-2*pi/6);
RA42=rotationv(RB41,pi/3); RA43=rotationv(RB42,pi/3);RA44=rotationv(RB43,pi/3);
RA45=rotationv(RB44,pi/3); RA46=rotationv(RB45,pi/3);RA41=rotationv(RB46,pi/3);
% number of points in gamma branch GM is GMnbrpnt, the

% rest are adjusted by the reletive length of the branch

GMnbrpnt=150; MKnbrpnt=round(GMnbrpnt*norm(MK)/norm(GM));
KGnbrpnt=round(GMnbrpnt*norm(KG) /norm(GM));

branchnum=0;

for branch=1:3

branchnum=branchnum-1;

if branchnum==1, nbrpnts=GMnbrpnt; end

if branchnum==2, nbrpnts=MKnbrpnt; end
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if branchnum==3, nbrpnts=KGnbrpnt; end

for k=1:nbrpnts

if branchnum==1, kvec=(1/nbrpnts)*k*GM; end

if branchnum==2, kvec=GM+(1/nbrpnts)*k*(MK); end

if branchnum==3, kvec=GM+MK+(1/nbrpnts)*k*(KG); end

%%

% D matrices for atom A up to the forth neighbour - - - - - - - - - -
DAAl=rotation(K1,0)+rotation(K1,2*pi/3)+rotation(K1,4*pi/3);
DAA2=rotation(K2,pi/6)+rotation(K2,pi/3+pi/6)+...
rotation(K2,2*pi/34pi/6)+rotation(K2,3*pi/3+pi/6)+...
rotation(K2,4*pi/3+pi/6)+rotation(K2,5%pi/3+pi/6);
DAA3=rotation(K3,pi/3)+rotation(K3,pi)+rotation(K3,5%pi/3);
DAA4=rotation(K4,teta)+rotation(K4,2*pi/3-teta)+rotation(K4,2*pi/3+teta)+...
rotation(K4,4*pi/3-teta)+rotation(K4,4*pi/3+teta)+rotation(K4,2*pi-teta);
DA=rotation(K2,pi/6)*exp(i*dot(kvec,RA1))+rotation(K2,pi/3+pi/6)*...
exp(i*dot(kvec,RA2))+rotation(K2,2*pi/3+pi/6)*exp(i*dot (kvec,RA3))+...
rotation(K2,3*pi/3+pi/6)*exp(i*dot (kvec,RA4))+rotation(K2,4*pi/3+pi/6)*...
exp(i*dot(kvec,RA5))+rotation(K2,5%pi/3+pi/6)*exp(i*dot(kvec,RA6));
DAA=DAA1+DAA24+DAA3+DAA4-DA;
DABIl=rotation(K1,0)*exp(i*dot(kvec,RB11-cc))+rotation(K1,2*pi/3)*...
exp(i*dot(kvec,RB12-cc))+rotation(K1,4*pi/3)*exp(i*dot(kvec,RB13-cc));
DAB3=rotation(K3,pi/3)*exp(i*dot(kvec,RB31-cc))+rotation(K3,pi)*...
exp(i*dot(kvec,RB32-cc))+rotation(K3,5%pi/3)*exp(i*dot(kvec,RB33-cc));
DAB4=rotation(K4,teta)*exp(i*dot(kvec,RB41-cc))+rotation(K4,2*pi/3-teta)*...
exp(i*dot(kvec,RB42-cc))-+rotation(K4,2*pi/3+teta)*exp(i*dot(kvec,RB43-cc))+...
rotation(K4,4*pi/3-teta)*exp(i*dot(kvec,RB44-cc))+rotation(K4,4*pi/3+teta)*...

exp(i*dot(kvec,RB45-cc))+rotation(K4,2*pi-teta)*exp(i*dot (kvec,RB46-cc));
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DAB=-(DAB1+DAB3+DAB4);

% D matrices for atom B up to the forth neighbour - - - - - - - - - -
DBBl=rotation(K1,2*pi/6)+rotation(K1,pi)+rotation(K1,5*pi/3);
DBB2=rotation(K2,pi/6)+rotation(K2,pi/3+pi/6)+rotation(K2,2*pi/34+pi/6)+...
rotation(K2,3*pi/3+4pi/6)+rotation(K2,4*pi/3+pi/6)+rotation(K2,5%pi/3+pi/6);
DBB3=rotation(K3,0)+rotation(K3,2*pi/3)+rotation(K3,4*pi/3);
DBB4=rotation(K4,pi/3-teta)+rotation(K4,pi/3+teta)+rotation(K4,pi-teta)+...
rotation(K4,pi+teta)+rotation(K4,5%pi/3-teta)+rotation(K4,5*pi/3+teta);
DB=rotation(K2,pi/6)*exp(i*dot(kvec,RB1))+rotation(K2,pi/3+pi/6)*...
exp(i*dot(kvec,RB2))+rotation(K2,2*pi/3+pi/6)*exp(i*dot(kvec,RB3))+...
rotation(K2,3*pi/3+pi/6)*exp(i*dot(kvec,RB4))+rotation(K2,4*pi/3+pi/6)*...
exp(i*dot(kvec,RB5))+rotation(K2,5%pi/3+pi/6)*exp(i*dot(kvec,RB6));
DBB=DBB1+DBB2+DBB3+DBB4-DB;
DBAl=rotation(K1,2*pi/6)*exp(i*dot(kvec,RA11+cc))+rotation(K1,pi)*...
exp(i*dot(kvec,RA12+cc))+rotation(K1,5%pi/3)*exp(i*dot (kvec,RA13+-cc));
DBA3=rotation(K3,0)*exp(i*dot(kvec,RA31+cc))+rotation(K3,2*pi/3)*...
exp(i*dot(kvec,RA324-cc))+rotation(K3,4*pi/3)*exp(i*dot(kvec,RA33+-cc));
DBA4=rotation(K4,pi/3-teta)*exp(i*dot (kvec,RA41+cc))+...
rotation(K4,pi/3+teta)*exp(i*dot(kvec,RA42+cc))+rotation(K4,pi-teta)*...
exp(i*dot(kvec,RA43+-cc))+rotation(K4,pi+teta)*exp(i*dot(kvec,RA44+-cc))...
+rotation(K4,5*pi/3-teta)*exp(i*dot (kvec,RA45+cc))+...
rotation(K4,5%pi/3+teta)*exp(i*dot(kvec,RA46+cc));
DBA=-(DBA1+DBA3+DBA4);

D=[DAA DAB; DBA DBB];

wesqrt(eig(D)/(M)),/(c*100);

if branchnum==1,plot(k,w,”.b’);hold on; end

if branchnum==2, plot(k+GMnbrpnt,w,”.b’);hold on; end
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if branchnum==3, plot(k+GMnbrpnt+MKnbrpnt,w,”.b’);hold on; end ;
end

end

function rotatedK = rotation(K,theta); % this rotates matrices

Utheta = [cos(theta),sin(theta),0; -sin(theta),cos(theta),0; 0,0,1];
rotatedK = inv(Utheta)*K*Utheta,

function f = rotationv(v,theta); % this rotates vectors

f = [[cos(theta),-sin(theta),0];[sin(theta),cos(theta),0];[0,0,1]]*v;
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APPENDIX B

THE CASE OF REPEATED EIGENVALUES

Let D be an operator which can be diagonalized; i.e., its eigenvectors form a complete

set. And let operators A, B in the general eigenvalue problem:
Aq, = aBq,, (172)

be such that the eigenvectors form a complete set. Now consider operator D which

commutes with A and B:

DA(q) = AD(q) , DB(q) = BD(q). (173)

We shall prove that there exists eigenvectors q,7 = 1,2, ..., of (172) that are also
eigenvectors of D: DqZ = M\q’. To this end let Q, denote the subspace containing

all the eigenvectors of (172) with eigenvalue a. That is:
qeQ, < Aq=aBaqa. (174)
First we show that D is Q,-invariant, that is:
a€Q,=DqeQ,. (175)
We have:

q € Q,=Aq=aBq= DAq=aDBq=

ADg=aBDq = Dqe€Q,. (176)
Let D, denote the restriction of D to the subspace Q,:
D,=D]q, - (177)
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Then

D, : Q. Q. (178)

and D, has a complete set of eigenvectors in Q, since it is a restriction of D. Thus

there exists q!, g2, q3, ..., 7, ...€ Q, such that
Dq’, = \d,, i=1,2,... (179)

These q,€ Q,, are also eigenvectors of (172) corresponding to a. Replacing the original

eigenvectors of (172) by g’ i = 1,2, ... completes the proof.

Return to the problem of Chapter II, Ty, T KT and T' MT take the place of
D, A and B, respectively. The translation operator Ty is the same operator used in
quantum mechanics, and its eigenvectors form a complete set. Also it commutes with
matrices T MT and T' KT. So in case that w is a repeated eigenvalue, we showed

that we can find eigenvectors in the eigenspace of w which are also eigenvectors of Ty, .

As a result, similar to [57] pp. 224-225, if T KTq = —w>T MTq then Tyg =)\q.
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APPENDIX C

POWER CALCULATION

Representing harmonic forces and displacements in a complex form, makes all the
calculation less tedious. However, computation of the power or the work done by
these forces is not that straight forward. In chapter 2, we used the fact that the

average power of a harmonic force with harmonic displacement equals to:

SRe{(F.a)), (180)

in which rather than a sinusoidal force and displacement, the harmonic force and
displacement are represented by F = Fe™! and q =qe’“*~%) respectively. In this part
we investigate this relation. We use the phasor diagram of Fig. 39 for illustration.The

real input power into the system equals to:

Power = Fcos(wt).q cos(wt — ¢). (181)
We can write 181 as:
P
7(1 (cos(2wt — @) + cos(p)) (182)
which is equal to
Fq F¢
Power = 761 cos ¢ + TQ cos(2wt — ). (183)

By integrating the power over one period, the second term on the right hand side

of eq. 183 vanishes. The second term dictates the fluctuation of the power; absorbing
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Figure 39: Phasor graph of force and displacement in a harmonic motion

at some instances and giving back in other instances. Thus, the average power over

one period is:

Fq

Fg .
one perio cosp + SLcos(2wt — @))dt  F
f P d( 2 2 ( ) —-4 COS (. (184)

one period 2

In complex plane we can write F and q in Cartesian coordinates as:

F = atbi (185)
q = c+di.
Then we have:
Fe bd
7qcoss0 = ac; : (186)
Also:
(F.q) = F.q = (a+bi)(c— di) = ac + bd +i(bc — ad). (187)
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Consequently,

power _ %Re <F,q>.

fone period
one period
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APPENDIX D

THE RELATION BETWEEN EIGENVALUES IN

STATE-SPACE AND CONFIGURATION SPACE

In chapter IV, by transforming the equation of motion from the configuration space to
the state-space form, we double the size of the coordinate vector and matrices. Hence
we have to justify that during this operation, we do not introduce new eigenvalues;

i.e., the number of w satisfying:

T (—w’M+iwC + K)Tq = 0, (188)

and

T (iwM*+K*)Tqs = 0, (189)

are the same. In eq. (188), M, C and K are mass, damping and stiffness matrices,

respectively. In eq. (189), M*, K* and g are defined as:

q;
0 M K C a
M* £ N and qg= : (190)
K 0 0 -K q;
| a |

Also the transformation matrices are defined by:

M|
S

T 0 .
T

(191)

M
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In order to satisfy the eqs. (188) and (189) for non-zero q and qg, the determinant

of the left hand side operators should be zero:

det(T" (—w?M+iwC + K)T) = 0, (192)
det(T (iwM*+K*)T) = 0. (193)

Here, we show that these two conditions are equivalent. By expanding eq. (193), we

have:

T
det W + =0, (194)
which is equal to:

TK T (wM+C)||T o
det . . =0, (195)
wT K -T K 0T
and this can be simplified to:
T KT T (iwM + C)T
aw || T - ~0. (196)
iwT KT —-T KT

It has been shown [98] that:

A B
Y A,B,C,D € C™; det — det(AD — CB) when AC = CA.
C D
(197)

Since T' KT and iwT KT obviously commute, we use this theorem to simplify eq.

(196) as:
det <— (TTKT)2 - (z’wTTKT) (TT(MM + C)T)> ~0, (198)
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and this can be rephrased as:

~ det (TTKT> det (TTKT + TT(—w2M+iwC)T) —0, (199)

and in a more compact form:

det (TTKT) det (TT(—w2M+iwC + K)T) —0. (200)

Comparing eq. (192) and (200), its deduced that transforming equation of motion
from the configuration space to the state-space form would not introduce extra w’s

to the solution.
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APPENDIX E

SOME LINEAR ALGEBRA

FE.1 Banded Matrix

A square matrix A, ., = (a;;) is called banded matrix with bandwidth K; + K + 1

if [99]:

(lijzo ‘v’j<i—Klande>i+K2. (201)

In a diagonal matrix, K; = Ky = 0, and in a tridiagonal matrix we have K; = 1,

K5 = 1. The stiffness matrix is banded for most of the systems. As we increase
the number of interaction between neighbors, the bandwidth of the stiffness matrix

increases accordingly.

E.2 Determinant

Let p = (p1, pa, --.pn) be one of n! permutation of (1,2, ...,n). Determinant of an n xn

matrix A = [a;;] is defined by Leibniz formula to be the scalar:

det(A) = (p)ay, azp, ...anp,, (202)

p
in which the sum is taken over all the n! permutation and

1 if p is an even permutation of (1,2, ...,n)
o(p) = S e
—1if p is an odd permutation of (1,2, ...,n)
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By even/odd permutation, we mean the number of element swaps necessary to get
(p1, D2, .-pn) from (1,2, ...,n) is even/odd. Note that each term in (202) contains ex-
actly one entry from each row and each column of A. For example of (5,3,2,4,1,7,6)

we can write:

(5,3,2,4,1,7,6) — (5,3,2,4,1,6,7) — (1,3,2,4,5,6,7) — (1,2,3,4,5,6,7). (204)

We used three swaps and hence o(p) = —1.
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